Les castors et les humains sont les deux seules espèces capables de construire des retenues et diversions d'eau sur le lit mineur des rivières. Une nouvelle étude nord-américaine confirme, après de nombreuses autres, que la formation des retenues par barrages de castor tend à augmenter le stockage local de l'eau dans les sols et nappes, ainsi dans le cas étudié qu'à baisser la température de l'eau. Les chercheurs jugent ce bilan très bénéfique, notamment en situation de changement climatique qui réduit le débit des petites rivières de tête de bassin. Ces travaux contredisent évidemment le dogme du libre écoulement des eaux selon lequel tout obstacle en rivière est un drame écologique, et toute retenue une somme d'effets uniquement négatifs. L'état normal d'une rivière est plutôt d'être parsemée de tels obstacles, qu'ils proviennent de castors, d'humains, d'embâcles, d'éboulis ou autres causes ni plus ni moins naturelles les unes que les autres.
La rivière avant et après la création de barrages et retenues par les castors, extrait de Dittbrenner et al 2022, art cit.
Longtemps présent en abondance dans les ruisseaux et rivières de l'hémisphère Nord, les castors américains (Castor canadensis) et eurasiens (Castor fiber) ont connu une régression forte de l'Antiquité au 20e siècle, au point de frôler l'extinction. Désormais protégées, ces espèces ont entamé une reconquête progressive des vallées où elles vivaient, du moins celles qui présentent encore des biotopes favorables à leur cycle de vie. C'est le cas en particulier des têtes de bassin qui sont restées boisées.
Les castors se caractérisent par la construction de barrages, digues, canaux, huttes qui forment leur territoire. C'est la seule espèce avec la nôtre qui crée des plans d'eau par barrages. Les écologues et hydrologues s'intéressent aux castors pour comprendre l'impact des retenues d'eau qu'ils bâtissent. Benjamin J. Dittbrenner et ses collègues ont analysé des bassins versants aux Etats-Unis en phase de reconquête par une colonie de castors.
Voici le résumé de leur travail
"De nombreuses régions connaissent une augmentation des températures des cours d'eau en raison du changement climatique, et certaines connaissent une réduction des débits des cours d'eau en été et de la disponibilité de l'eau. Étant donné que la construction de barrages et la formation de retenues par le castor peuvent augmenter le stockage de l'eau, le refroidissement des cours d'eau et la résilience de l'écosystème riverain, le castor a été proposé comme un outil potentiel d'adaptation au climat. Malgré le grand nombre d'études qui ont évalué comment l'activité des castors peut affecter l'hydrologie et la température de l'eau, peu d'études expérimentales ont quantifié ces résultats après la relocalisation des castors.
Nous avons évalué les changements de température et de stockage de l'eau suite à la relocalisation de 69 castors dans 13 cours d'eau d'amont du bassin versant de la rivière Skykomish dans le bassin de la rivière Snohomish, Washington, États-Unis. Nous avons évalué comment les barrages de castors affectaient le stockage des eaux de surface et souterraines et la température des cours d'eau. Les relocalisations réussies ont créé 243 m3 de stockage d'eau de surface par 100 m de cours d'eau au cours de la première année suivant la relocalisation. Les barrages ont augmenté l'élévation de la nappe phréatique jusqu'à 0,33 m et stocké environ 2,4 fois plus d'eau souterraine que d'eau de surface par tronçon de relocalisation. Les tronçons de cours d'eau en aval des barrages ont affiché une diminution moyenne de 2,3 °C pendant les conditions de débit de base en été. Nous avons également évalué comment les dommages, l'état, la fréquence d'entretien et la morphologie des étangs influençaient la température des cours d'eau dans les complexes de milieux humides naturellement colonisés.
Nos résultats démontrent que la construction de barrages peut augmenter le stockage de l'eau et réduire les températures des cours d'eau au cours de la première année suivant la relocalisation réussie des castors. La morphologie fluviale et des plaines inondables des tronçons candidats à la relocalisation est une considération importante car elle détermine le type et l'ampleur de la réponse. La relocalisation vers des tronçons avec de petites retenues abandonnées existantes peut répondre aux critères thermiques en convertissant des tronçons de réchauffement en tronçons de refroidissement, tandis que la relocalisation dans de grands complexes abandonnés ou un habitat vacant peut entraîner un plus grand stockage de l'eau. Bien que la relocalisation des castors puisse être une stratégie d'adaptation climatique efficace pour conserver des régimes hydrologiques et une qualité de l'eau plus stables dans notre zone d'étude, il semble y avoir des facteurs environnementaux et géomorphologiques spécifiques à la région qui influencent la façon dont les castors affectent stockage et température de l'eau. Des recherches supplémentaires sont nécessaires pour déterminer comment et pourquoi ces différences régionales affectent le stockage de l'eau et la réponse de la température des cours d'eau dans les systèmes influencés par le castor."
Les auteurs rappellent que leurs analyses confirment de nombreux travaux antérieurs : "Il a été démontré que les complexes de castor augmentent considérablement le potentiel de stockage des eaux de surface et souterraines. On estime que, dans le monde entier, les complexes de castors stockent jusqu'à 11 km3 d'eau de surface (Karran et al., 2016) avec jusqu'à 30 % de l'eau de surface d'un cours d'eau stockée dans des retenues de castors (Duncan, 1984). Des études ont montré que le castor augmentait la largeur des zones riveraines le long des cours d'eau de 11 à 34 m (McKinstry et al., 2001), et dans les tronçons en aval des barrages, le volume des bassins augmentait également (Stack & Beschta, 1989). On a constaté que les tronçons de cours d'eau endigués étendaient l'étendue latérale de la zone hyporhéique jusqu'à 8 m au-delà des tronçons de contrôle à partir d'une largeur de 0,2 m avant la construction du barrage (Shaw, 2009), tandis que les retenues plus grandes étendaient l'étendue des eaux souterraines de plus de 50 m ( 10 m dans les tronçons témoins ; Lowry, 1993). Cependant, en raison de la complexité et de la grande variabilité de la géologie locale, du relief, du type de sol et d'autres caractéristiques morphologiques, les estimations du stockage total sont difficiles à quantifier. Bien que la plupart des études existantes aient documenté le stockage dans des complexes de castor bien établis, les effets du déplacement du castor sur le stockage des eaux de surface et souterraines restent sous-étudiés."
Concernant la température, les auteurs soulignent la dépendance au contexte local et la nécessité de bien fixer l'échelle de l'analyse thermique, en tenant compte notamment des remontées de nappes : "Les effets des barrages de castors sur la température des cours d'eau sont également très variables d'une étude à l'autre selon l'emplacement et la méthodologie d'étude. Des recherches antérieures ont trouvé des preuves de réchauffement (Avery, 2002; Patterson, 1951), de refroidissement (White, 1990), de réchauffement ou de refroidissement selon la saison (Avery, 1983), ou d'absence de relation entre la présence d'un barrage et la température (McRae & Edwards, 1994 ). Dans les systèmes d'amont à plus haute altitude, où les cours d'eau sont relativement froids, des augmentations de température de 6 à 9 °C ont été observées en aval des étangs de castors (Margolis et al., 2001). Des études plus récentes ont évalué les températures des cours d'eau à plus grande échelle et ont constaté que les étangs de castors peuvent également avoir un effet de refroidissement net (Weber et al., 2017; White et Rahel, 2008) en raison de la recharge et de la remontée d'eau souterraine (Pollock et al., 2007)"
Discussion
Le castor nord-américain bâtit des barrages de plus grande dimension que le castor européen, mais les deux espèces utilisent cette même stratégie de construction de niche pour remodeler les rivières.
Le point évidemment étonnant de ces études sur le castor, c'est qu'elles contredisent totalement le discours dogmatique sur la nécessité d'un libre écoulement parfait des eaux de surface au nom de la continuité écologique des rivières. Dans la réalité, les rivières même sans humains sont cesse fragmentées, par des barrages d'embâcles, d'éboulis ou de castors. Leur lit est loin d'être le petit chenal lotique encaissé et sinueux que l'on montre souvent comme exemple de rivières "naturelles" alors que c'est un style fluvial tardif issu de l'exploitation humaine des bassins versants (voir Lespez et al 2015).
Si le petit barrage de castor diffère évidemment du petit barrage humain par sa conception, il est notable que de nombreuses propriétés et fonctionnalités hydrologiques sont semblables : hausse de la lame d'eau, élargissement du lit en eau sur l'emprise de la retenue, débordement locaux an amont si le foncier est prévu pour l'accueillir (ou diversion dans des canaux latéraux, sachant que le castor lui aussi est capable de creuser ces annexes hydrauliques). Au demeurant, d'autre travaux de recherche ont montré que la destruction des ouvrages humains mène à des incisions de lit, moindres débordements et moindres recharges de nappes (Maaß et Schüttrumpf 2019, Podgórski et Szatten 2020). Les mêmes causes produisent les mêmes effets.
L'image ci-dessous montre une succession de petits plans d'eau humains en tête de bassin, sur une carte ancienne (Cassini, 18e siècle). Nos ancêtres, comme les castors, avaient une certaine intuition des moyens de retenir et gérer l'eau dans les bassins versants...
Référence : Dittbrenner BJ et al (2022), Relocated beaver can increase water storage and decrease stream temperature in headwater streams, Ecosphere, 13, 7, e4168
Succession de plans d'eau humains dans un aménagement d'Ancien Régime en tête de bassin.
Aucun commentaire:
Enregistrer un commentaire