Affichage des articles dont le libellé est Hydrologie. Afficher tous les articles
Affichage des articles dont le libellé est Hydrologie. Afficher tous les articles

25/08/2024

Le futur cycle de l'eau dans une France réchauffée (Explore2)

Les dernières simulations des modèles couplés climat-hydrologie indiquent que la France métropolitaine va connaître dans les prochaines décennies des sécheresses plus prononcées en été, mais aussi des pluies se maintenant ou augmentant en hiver. Il est donc indispensable de préserver et renforcer les systèmes hydrauliques permettant de stocker l'eau, au lieu de la politique actuelle de destruction des retenues et réservoirs. 



La destruction des réservoirs d'eau, comme ici sur le fleuve Sélune dans la Manche, est un choix mal-adaptatif face aux défis hydro-climatiques du pays. Les lois sur l'eau doivent notamment restaurer l'impératif de gestion hydraulique des précipitations entre saison pluvieuse et saison sèche. (Source Archives Ouest-France, dr)


Le projet Explore2, mené par l'INRAE pour la partie scientifique et l'Office iternational de l'Eau pour le transfert des résultats, vise à actualiser les connaissances sur l'impact du changement climatique sur les ressources en eau en France. Inspiré par le GIEC, ce projet fédère une quarantaine de scientifiques pour exploiter les derniers scénarios climatiques du GIEC. Explore2 se distingue par son ampleur, analysant 4 000 bassins versants avec un maillage de 8 x 8 km, permettant ainsi une analyse territoriale fine. Les données harmonisées et les outils communs facilitent l'appropriation des résultats par les acteurs de l'eau grâce à des comités d'utilisateurs intégrés dès le début du projet.

Les changements projetés dans Explore2 comprennent des incertitudes qu'il faut avoir à l'esprit : celle des émissions carbone, qui dépendent de nos choix, mais aussi celles de la physique sous-jacente des modèles. Les modèles sont en effet encore imparfaits et divergents pour la simulation des nuages, des précipitations et des flux zonaux à l'avenir. Pour toutes les variables, l’incertitude concerne l’intensité des changements. Pour les précipitations et les variables étroitement liées à celles-ci (débits annuels moyens ; débits journaliers maximum), l’incertitude concerne aussi le signe des changements, les précipitations augmentant pour certaines projections, diminuant pour d’autres. A l’inverse, les modèles sont toujours d’accord sur le signe des changements attendus pour les températures (augmentation) et aussi pour les variables qui en dépendent fortement : précipitations solides (diminution), évapotranspiration (augmentation), étiages estivaux (intensification). 

Les étés plus secs, les hivers restant pluvieux
Explore2 utilise trois scénarios d'émissions de gaz à effet de serre du GIEC, allant du moins émetteur, compatible avec les accords de Paris, au plus émetteur sans atténuation, avec un scénario intermédiaire de modération. Ces scénarios ont été développés en 72 projections climatiques pour modéliser l'évolution des ressources en eau jusqu'en 2100, couvrant des aspects comme les débits, précipitations, et niveaux des nappes, au niveau national et par territoire.

Les projections indiquent un réchauffement en France métropolitaine pouvant atteindre +4°C à la fin du siècle sous le scénario de fortes émissions, avec des étés en moyenne +4,7°C plus chauds. Les précipitations augmenteront en hiver, particulièrement dans le Nord (+24 %) et le Sud (+13 %), mais diminueront fortement en été (-23 % en moyenne). Une hausse de la recharge hivernale des aquifères est prévue, excepté dans certaines régions du Sud et de la Bretagne, tandis que la fréquence et la sévérité des sécheresses météorologiques et des sols augmenteront significativement.

Les sécheresses hydrologiques seront plus sévères, avec une baisse des débits estivaux estimée à -30 % pour les fortes émissions et -12 % pour les émissions modérées. Les assèchements des cours d'eau en tête de bassin devraient progresser, touchant 27 % du territoire sous le scénario de fortes émissions à la fin du siècle, comparé à 17 % actuellement. 

Ces changements nécessiteront des adaptations importantes dans la gestion des ressources en eau. Outre la sobriété des usages, il est notamment indispensable de préserver tous les systèmes hydrauliques aidant à réguler des niveaux variables de précipitations et d'écoulement, notamment les retenues et réservoirs. Cela implique d'amender dans les normes françaises et européennes les politiques de renaturation et de continuité écologique, qui ont été conçues pour la biodiversité mais sans réflexion réelle sur le changement climatique et ses conséquences.

Référence : Inrae-OiEau, Projet Explore 2, lien vers les rapports (août 2024)

24/05/2023

Les lacs naturels et artificiels perdent de l'eau depuis 30 ans – mais pas tous et pas toujours pour les mêmes raisons (Yao et al 2023)

Plus de la moitié des grands plans d’eau naturels et artificiels dans le monde ont vu leur volume se réduire au cours de ces trois dernières décennies, sous l’effet du changement climatique et des activités humaines, selon une étude venant de paraître dans Science. Un quart a vu ce volume augmenter et un quart n'a pas de tendance claire. Le stockage en réservoir artificiel a néanmoins connu un léger gain sur la période, car les constructions de nouveaux sites ont compensé les pertes des sites existants. La principale cause de perte de volume d'eau stocké en réservoir artificiel est la sédimentation, ce que les chercheurs suggèrent de prendre en compte dans les politiques de gestion des barrages et retenues. 


Tendance du volume d'eau des grands lacs, extrait de Yao et al 2023, art cit.

Les plans d'eau naturels comme artificiels ont un rôle important pour les sociétés humaines, comme le rappellent Fangfang Yoao et ses collègues en introduction de leur recherche : "Les lacs couvrent 3 % de la superficie terrestre mondiale, stockant de l'eau stagnante ou à écoulement lent qui fournit des services écosystémiques essentiels d'eau douce et d'approvisionnement alimentaire, d'habitat des oiseaux d'eau, de cycle des polluants et des nutriments et des services récréatifs. Les lacs sont également des éléments clés des processus biogéochimiques et régulent le climat par le cycle du carbone. Leurs biens et services potentiels sont modulés par le stockage de l'eau du lac (LWS), qui fluctue en réponse aux changements de précipitations et de débit des rivières, ainsi qu'en réponse aux activités humaines directes (barrages et consommation d'eau) et au changement climatique."

Pour mener leur évaluation, les chercheurs ont agrégé près de 249 000 images par satellite, en même temps que des batteries de données météorologiques et d'informations sur l’évaporation, l’humidité des sols et la transpiration des végétaux, les ruissellements et les écoulements, l’irrigation. Ainsi ont-ils pu estimer le poids des facteurs dans l'évolution de la ressource hydrique à la surface de la Terre.

Voici d'abord le résumé de leur étude :
"Le changement climatique et les activités humaines menacent de plus en plus les lacs qui stockent 87 % de l'eau douce de surface liquide de la Terre. Pourtant, les tendances récentes et les facteurs de changement du volume des lacs restent largement inconnus à l'échelle mondiale. 
Ici, nous analysons les 1972 plus grands lacs mondiaux à l'aide de trois décennies d'observations satellitaires, de données climatiques et de modèles hydrologiques, et nous avons constaté des baisses de stockage statistiquement significatives pour 53 % de ces masses d'eau au cours de la période 1992-2020. La perte nette de volume dans les lacs naturels est largement attribuable au réchauffement climatique, à l'augmentation de la demande d'évaporation et à la consommation humaine d'eau, tandis que la sédimentation domine les pertes de stockage dans les réservoirs. 
Nous estimons qu'environ un quart de la population mondiale réside dans un bassin d'un lac en voie d'assèchement, ce qui souligne la nécessité d'intégrer les impacts du changement climatique et de la sédimentation dans la gestion durable des ressources en eau."

Plus en détail, voici les informations clés qui ressortent de cette étude :
  • Une base de données mondiale des stockage d'eau en grands lacs a été composée de séries temporelles (1992 à 2020) de stockage infra-annuelles pour 1972 grandes masses d'eau, dont 1051 lacs naturels (100 à 377 002 km2) et 921 réservoirs (4 à 67 166 km2), qui représentent 96 et 83% du stockage naturel des lacs et réservoirs de la Terre.
  • Plus de la moitié (53 ± 2 %) des grands lacs ont subi des pertes d'eau importantes. La perte prévaut notamment l'ouest de l'Asie centrale, le Moyen-Orient, l'ouest de l'Inde, l'est de la Chine, le nord et l'est de l'Europe, l'Océanie, les États-Unis contigus, le nord du Canada, l'Afrique australe et la majeure partie de l'Amérique du Sud. 
  • Environ un quart (24%) des grands lacs ont connu des gains d'eau importants, qui se trouvent en grande partie dans les lieux de construction de barrages et dans les régions isolées ou sous-peuplées, telles que le plateau tibétain intérieur et les grandes plaines du nord de l'Amérique du Nord. 
  • À l'échelle mondiale, le stockage en lac a montré une baisse nette à un taux de −21,51 ± 2,54 Gt an−1, ou de 602,28 km3 en volume cumulé, ce qui équivaut à l'utilisation totale de l'eau aux États-Unis pour l'année entière de 2015
  • La perte de volume cumulée est d'environ 40 % supérieure à la moyenne des variations annuelles (c'est-à-dire les différences entre les valeurs maximales et minimales) sur la période 1992-2020
  • Le volume naturel des lacs naturels a diminué à un taux net de −26,38 ± 1,59 Gt an−1, dont 56 ± 9% sont attribuables aux activités humaines directes et aux changements de température et d'évapotranspiration potentielle (PET), c'est-à-dire la demande d'évaporation. Un total de 457 lacs naturels (43 %) ont subi des pertes d'eau importantes avec un taux total de −38,08 ± 1,12 Gt an−1, tandis que des gains d'eau importants ont été constatés dans 234 lacs naturels (22 %) à un taux total de 13,02 ± 0,41 Gt an−1. Les 360 lacs restants (35 %) n'ont montré aucune tendance significative. Plus de 80 % du déclin total des lacs asséchés provient des 26 pertes les plus importantes (>0,1 Gt an−1, p < 0,1).
  • Près des deux tiers (64 ± 4 %) de tous les grands réservoirs artificiels ont connu des baisses de stockage importantes, bien que les réservoirs aient affiché une augmentation globale nette à un taux de 4,87 ± 1,98 Gt an−1, en raison de 183 (20 %) réservoirs récemment remplis. Des baisses de stockage dans les réservoirs existants, c'est-à-dire déjà remplis avant 1992, ont été observées dans la plupart des régions. Le déclin global du stockage dans les réservoirs existants (−13,19 ± 1,77 Gt an−1) peut être largement attribué à la sédimentation : "Nos résultats suggèrent que la sédimentation est le principal contributeur à la diminution globale du stockage dans les réservoirs existants et a un impact plus important que la variabilité hydroclimatique, c'est-à-dire les sécheresses et la récupération après les sécheresses".
Discussion
Cet article de recherche montre que la disponibilité de l'eau devient un enjeu de plus en plus pressant en période de changement climatique et face aux besoins des sociétés. Une autre mission récemment lancée  – SWOT (Surface Water Ocean Topography) pour le Centre national d’études spatiales et la NASA – permettra à terme d'étendre ce travail à des millions de petits lacs et plans d'eau.

Il est notable que les chercheurs insistent sur le rôle de la sédimentation dans la perte de volume stocké des réservoirs artificiels. Le gestionnaire public doit réfléchir à simplifier les travaux de curage lors des vidanges d'entretien ainsi que la valorisation des sédiments. Car face au manque d'eau, et en particulier à la variabilité plus forte du cycle de l'eau (épisodes de fortes pluies alternant avec des épisodes de sécheresse), les sociétés humaines ne vont certainement pas abandonner le stockage en surface : il s'agit de rendre ce stockage plus efficient en même temps que de l'adapter aux connaissances nouvelles en écologie aquatique.

Référence : Yao F et al (2023), Satellites reveal widespread decline in global lake water storage, Science, 80, 6646, 743-749

19/05/2023

Considérer l'eau de surface et l'eau souterraine comme une seule et même ressource (Scanlon et al 2023)

L'analyse satellitaire par gravimétrie (mission GRACE) permet d'estimer l'évolution globale des ressources en eau douce superficielle et souterraine, par bilan de masse. Les dernières mesures publiées par les chercheurs montrent une forte variabilité interannuelle, une progression globale de la superficie de stockage d'eau en surface, une déplétion régionale de la ressource en raison du climat ou des usages, au premier rang desquels l'irrigation.

Tendance des ressources en eau depuis le début de la décennie 2000.

Entre 2012 et 2020, la crise de l'eau est apparue huit fois parmi les cinq risques à fort impact répertoriés par le Forum économique mondial. La 77e Assemblée générale des Nations Unies en 2022 a émis une alerte rouge sur le climat et l'approvisionnement en eau. La gestion quantitative de l'eau est donc revenue au premier plan des préoccupations publiques.

Une équipe internationale de chercheurs vient de publier une estimation des ressources globales d'eau douce à partir du satellite GRACE, qui permet (par bilan massique) de mesurer le stockage total d'eau en surface et en sol, à échelle de la planète. Ces chercheurs font aussi un passage en revue des options pour gérer l'eau douce, en insistant sur le fait que l'eau de surface et l'eau souterraine doivent être considérées comme une seule et même ressource. 

Voici le résumé de leur travail :
L'eau est une ressource essentielle, mais assurer sa disponibilité confronte à des défis liés aux extrêmes climatiques et à l'intervention humaine. Dans cette revue, nous évaluons l'évolution actuelle et historique des ressources en eau, en considérant les eaux de surface et les eaux souterraines comme une ressource unique et interconnectée. 
Les tendances du stockage total de l'eau ont varié d'une région à l'autre au cours du siècle dernier. Les données satellitaires de Gravity Recovery and Climate Experiment (GRACE) montrent des tendances à la baisse, à la stabilité et à la hausse du stockage total de l'eau au cours des deux dernières décennies dans diverses régions du monde. La surveillance des eaux souterraines fournit un contexte à plus long terme au cours du siècle dernier, montrant une augmentation du stockage de l'eau dans le nord-ouest de l'Inde, le centre du Pakistan et le nord-ouest des États-Unis, et une diminution du stockage de l'eau dans les hautes plaines et la vallée centrale des États-Unis. La variabilité climatique entraîne certains changements dans le stockage de l'eau, mais l'intervention humaine, en particulier l'irrigation, est un moteur majeur.
La résilience des ressources en eau peut être accrue en diversifiant les stratégies de gestion. Ces approches comprennent des solutions vertes, telles que la préservation des forêts et des zones humides, et des solutions grises, telles que l'augmentation des approvisionnements (dessalement, réutilisation des eaux usées), l'amélioration du stockage dans les réservoirs de surface et les aquifères épuisés, le transport de l'eau. Un portefeuille diversifié de ces solutions, associé à la gestion des eaux souterraines et des eaux de surface en tant que ressource unique, peut répondre aux besoins humains et écosystémiques tout en construisant un système d'eau résilient.
Voici les points clés mis en avant par les chercheurs : 
Les tendances nettes des données sur le stockage total de l'eau de la mission satellite GRACE vont [selon les grands bassins] de −310 km3 à 260 km3 au total sur une mesure de 19 ans dans différentes régions du monde, variations causées par le climat et l'intervention humaine.

Les eaux souterraines et les eaux de surface sont fortement liées, 85 % des prélèvements d'eau souterraine provenant du captage des eaux de surface et d'une évapotranspiration réduite, et les 15 % restants provenant de l'épuisement des aquifères.

Les interventions climatiques et humaines ont causé la perte d'environ -90 000 km2 de superficie d'eau de surface entre 1984 et 2015, tandis que 184 000 km2 de nouvelle superficie d'eau de surface se sont développées ailleurs, principalement en remplissant des réservoirs.

L'intervention humaine affecte les ressources en eau directement par l'utilisation de l'eau, en particulier l'irrigation, et indirectement par le changement d'affectation des terres, comme l'expansion agricole et l'urbanisation.

Les stratégies visant à accroître la résilience des ressources en eau comprennent la préservation et la restauration des forêts et des zones humides, et la gestion conjointe des eaux de surface et des eaux souterraines.


A propos des stockages en surface, les auteurs font les remarques suivantes :
"Le stockage géré de l'eau, y compris les réservoirs de surface et le stockage souterrain dans les aquifères, peut résoudre les déconnexions temporelles entre l'offre et la demande causées par les extrêmes climatiques (inondations et sécheresses). La diminution du stockage naturel dans le manteau neigeux dans le cadre du changement climatique souligne la nécessité de développer une capacité de stockage supplémentaire pour compenser les impacts climatiques.

À l'échelle mondiale, environ 58 000 grands barrages (≥15 m de haut) fournissent une capacité de stockage agrégée d'environ 7 000 à 8 300 km3. Les barrages à usage unique sont construits pour l'irrigation (~50%), l'hydroélectricité (21%) et l'approvisionnement en eau (12%). Cependant, les barrages mal gérés perturbent la connectivité écologique des rivières et la quantité et la qualité de l'eau en aval. Bien que la construction de barrages ait déjà atteint son apogée dans certains pays (en particulier à revenu élevé) parce que des sites de stockage appropriés ont été développés au maximum, les progrès du niveau de compétence en matière de prévision encouragent les efforts visant à optimiser le stockage sur les sites existants en utilisant des opérations de réservoir informées par les prévisions (FIRO), comme démontré à Lake Mendocino, en Californie. Le FIRO consiste à transférer l'excès d'eau de surface avant l'inondation des réservoirs vers les aquifères épuisés adjacents pour améliorer le stockage de l'eau. La Ganges Water Machine fournit un autre exemple de gestion conjointe des eaux de surface et des eaux souterraines pour améliorer le stockage de l'eau. L'irrigation étendue alimentée par les eaux souterraines pendant les périodes autres que la mousson offre un espace accru pour stocker les eaux de crue de la période de mousson de 3 mois, améliorant ainsi l'échange d'eau de surface et souterraine.

La construction de barrages augmente nettement dans les pays à revenu faible et intermédiaire où il existe encore un grand potentiel de réservoirs. Environ 3 700 barrages hydroélectriques sont en construction ou prévus, principalement en Amérique du Sud, en Asie du Sud et de l'Est et en Afrique. Il y a des inconvénients à utiliser des réservoirs pour réduire les pénuries d'eau. Par exemple, le remplissage du Grand barrage de la Renaissance éthiopienne (GERD, capacité de 74 km3) pourrait réduire considérablement les niveaux des réservoirs dans le réservoir du barrage du Haut Assouan en aval, et la gestion des deux réservoirs sera nécessaire pour faire face aux sécheresses pluriannuelles. Sur la base du paradoxe de Jevons, et comme ce qui concerne l'efficacité de l'irrigation, l'augmentation de l'approvisionnement en eau peut augmenter la demande et rendre les systèmes plus vulnérables aux pénuries.

Il existe un intérêt croissant pour le stockage de l'eau dans les aquifères épuisés en utilisant la recharge gérée des aquifères (MAR), le processus d'infiltration ou d'injection artificielle d'eau dans le sous-sol pour le stockage et la récupération ultérieure. De plus, avec l'augmentation des extrêmes climatiques, on s'intéresse de plus en plus à la capture des débits de crue et de tempête pour recharger les aquifères épuisés. Le volume annuel d'eau stockée à l'échelle mondiale grâce au MAR est passé à environ 10 km3 en 2015. Bien que les volumes de stockage du MAR soient faibles par rapport aux réservoirs de surface, le MAR peut être une stratégie extrêmement importante à l'échelle locale pour aider à atténuer le stress hydrique régional. Par exemple, dans le comté d'Orange, en Californie, le MAR est un composant essentiel du portefeuille local d'approvisionnement en eau et fournit suffisamment d'eau pour 850 000 personnes, en plus de co-bénéfices tels que la prévention de l'intrusion d'eau de mer et l'amélioration de la qualité de l'eau. L'épuisement du stockage des aquifères aux États-Unis a été estimé à 1 000 km3 entre 1900 et 2008, dépassant la capacité des nouveaux réservoirs de surface (673 km3) construits au cours de cette période. Cet héritage de l'épuisement de l'aquifère représente une grande capacité potentielle de réservoir souterrain pour soutenir le MAR, même en tenant compte de la perte permanente de stockage de l'aquifère due au compactage (par exemple, ~ 20 % en Californie). Les projets MAR peuvent étendre davantage les options de stockage local grâce à une gestion conjointe des réservoirs de surface traditionnels avec des installations MAR colocalisées. Bien que le MAR puisse avoir de multiples avantages, notamment l'atténuation de l'affaissement des terres et la restauration des écosystèmes, il peut également avoir des effets néfastes sur l'environnement, notamment l'engorgement, la salinisation des sols et la dégradation de la qualité de l'eau."
Discussion
La gestion intégrée de l'eau ne doit pas séparer l'eau de surface et l'eau souterraine, puisque ces deux réalités sont interconnectées dans le fonctionnement naturel des bassins versants comme dans les usages humains de l'eau (s'y ajoute, encore marginalement mais en forte croissance mondiale, le dessalement de l'eau de mer créant un apport d'eau douce en zone littorale). Cela suppose déjà de disposer d'un réseau de mesure complète de la ressource eau. 

Si ces estimations globales sont utiles et permises par la mission GRACE, elles ne doivent pas faire oublier que l'eau se gère toujours localement. Par exemple, outre les 58 000 grands barrages de plus 15 m dans le monde, il existe des millions d'ouvrages de moindre hauteur (1,2 million en Europe, voir Belletti et al 2020). Bien que passant sous le radar des réflexions globales, ces ouvrages ont aussi des fonctions de ralentissement, stockage, diversion de l'eau.  Il faudrait d'ailleurs ajouter aux barrages artificiels créés par les humains ceux résultant de processus non humains (embâcles, éboulis, castors etc.). Si l'eau doit être gérée face à l'aléa climatique et à la demande socio-économique, cette gestion s'opère sur chaque bassin versant, d'autant que le transport longue distance de l'eau reste une option énergie-intensive et difficilement actionnable, hors quelques très grands projets (cités dans l'article des chercheurs). 

Un point particulièrement intéressant pour la réflexion est la connexion des réservoirs de surfaces créés par des barrages, des digues ou des canaux avec les sols, aquifères et nappes. L'intérêt de stocker l'eau sous la surface est lié à une moindre évaporation, notamment en période de changement climatique – même s'il ne faut pas négliger que l'eau de surface reste nécessaire à la biodiversité très riche des milieux aquatiques et humides, les espèces ne pouvant évidemment se réfugier sous le sol en été, hormis une toute petite fraction adaptée aux assecs. A petite échelle, on peut imaginer que la gestion des ouvrages hydrauliques serve à des élévations de nappes, inondations contrôlées de lit majeur en saison pluvieuse, détournements par canaux vers des zones favorables à l'infiltration (cf par exemple les analyses locales sur une tête de bassin karstique in Potherat 2021). Cela suppose que le gestionnaire revienne à une culture hydraulique en la connectant aux connaissances hydrologiques et écologiques.

Référence : Scanlon BR et al (2023), Global water resources and the role of groundwater in a resilient water future, Nature Reviews Earth & Environment, 4.2, 87-101

16/05/2023

Le retour des castors oblige à repenser le concept de continuité de la rivière (Larsen et al 2021)

Ayant décliné depuis quelques millénaires et frôlé l'extinction à l'âge moderne, puis ayant bénéficié de protection stricte au 20e siècle, le castor fait désormais son grand retour dans l'aire américaine (Castor canadensis) et l'aire européenne (Castor fiber). Les chercheurs constatent que les bassins versants favorables au rongeur aquatique sont alors parsemés de nombreux barrages formant des plans d'eau et modifiant substantiellement le régime d'écoulement de la rivière, ses connexions au lit majeur comme aux aquifères. Cette observation empirique conduit à réviser le concept de continuité de la rivière, car la réalité historique des cours d'eau dans les zones à castor a sans doute été une série de discontinuités. Rien à voir avec la carte postale formant souvent vitrine des politiques de renaturation et de continuité dite "écologique", où l'on voit des petites rivières dégagées et s'écoulant sagement dans un lit sans aucun obstacle. Une image d'Epinal davantage qu'une réalité scientifiquement validée.



Trois spécialistes (Annegret Larsen, Joshua R. Larsen et Stuart N. Lane) ont proposé une synthèse de la littérature savante sur les effets hydrologiques et géomorphologiques des barrages de castors. Voici le résumé de leur recherche :
"Les castors (Castor fiber, Castor canadensis) sont l'un des ingénieurs des écosystèmes les plus influents parmi les mammifères, modifiant fortement l'hydrologie, la géomorphologie, le cycle des nutriments et les écosystèmes des corridors fluviaux. En tant qu'agent de perturbation, ils y parviennent d'abord et avant tout par la construction de barrages, qui retiennent l'écoulement et augmentent l'étendue des eaux libres, et dont découlent tous les autres impacts sur le paysage et l'écosystème. Après une longue période d'éradication locale et régionale, les populations de castors se sont rétablies et se sont développées dans toute l'Europe et l'Amérique du Nord, ainsi qu'une espèce introduite en Amérique du Sud, ce qui a nécessité une révision complète de l'état actuel des connaissances sur la façon dont les castors influencent la structure et le fonctionnement des corridors fluviaux. 
Ici, nous synthétisons les impacts globaux sur l'hydrologie, la géomorphologie, la biogéochimie et les écosystèmes aquatiques et terrestres. Nos principales conclusions sont qu'un complexe de barrages de castors peut augmenter le stockage de l'eau de surface et souterraine, modifier la répartition des bilans hydriques à échelle des tronçons, permettre une atténuation des inondations spécifique au site, modifier l'hydrologie à faible débit, augmenter l'évaporation, augmenter les temps de séjour de l'eau et des nutriments, augmenter l'hétérogénéité géomorphologique, retarder le transport des sédiments, augmenter le stockage du carbone, des nutriments et des sédiments, étendre l'étendue des conditions et des interfaces anaérobies, augmenter l'exportation en aval du carbone organique dissous et de l'ammonium, diminuer l'exportation en aval du nitrate, augmenter les transitions de l'habitat lotique à l'habitat lentique et l'eau primaire aquatique production, induire une succession «inverse» dans les assemblages de végétation riveraine et augmenter la complexité de l'habitat et la biodiversité à l'échelle du tronçon.
Nous examinons ensuite les principales rétroactions et les chevauchements entre ces changements causés par les castors, où la diminution de la connectivité hydrologique longitudinale crée des étangs et des zones humides, les transitions entre les écosystèmes lentiques et lotiques, l'augmentation des gradients d'échange hydraulique vertical et le cycle biogéochimique par unité de longueur de cours d'eau, tandis que l'augmentation la connectivité latérale déterminera l'étendue de la zone d'eau libre et des habitats des zones humides et littorales, et induira des changements dans les assemblages des écosystèmes aquatiques et terrestres. Cependant, l'étendue de ces impacts dépend d'abord du contexte hydrogéomorphique du paysage, qui détermine l'étendue de l'inondation des plaines inondables, un facteur clé des changements ultérieurs de la dynamique hydrologique, géomorphique, biogéochimique et écosystémique. Ensuite, cela dépend de la durée pendant laquelle les castors peuvent supporter des perturbations sur un site donné, qui est limitée par des rétroactions descendantes (par exemple, la prédation) et ascendantes (par exemple, la concurrence), et détermine en fin de compte les voies du paysage du corridor fluvial et la succession écosystèmique après abandon du castor. Cette influence démesurée des castors sur les processus et les rétroactions des corridors fluviaux est également fondamentalement distincte de ce qui se produit en leur absence. 
Les pratiques actuelles de gestion et de restauration des rivières sont donc ouvertes à un réexamen afin de tenir compte des impacts des castors, tant positifs que négatifs, de sorte qu'ils puissent potentiellement accueillir et améliorer les services d'ingénierie écosystémique qu'ils fournissent. Nous espérons que notre synthèse et notre cadre holistique d'évaluation des impacts des castors pourront être utilisés dans cette entreprise par les scientifiques et les gestionnaires de rivières à l'avenir, car les populations de castors continuent de croître en nombre et en aire de répartition."

Les chercheurs soulignent que le castor oblige à repenser le "river continuum concept" qui est une des bases savante de la continuité écologique. Il faut selon eux envisager que la rivière connaît en réalité des discontinuités :
"Les modifications à grande échelle des castors des modèles de processus physiques sur lesquels les écosystèmes s'adaptent et fonctionnent perturbent donc ce cadre traditionnel du RCC (river continuum concept), en particulier dans les habitats de cours d'eau d'ordre inférieur, avec des conséquences importantes pour notre conceptualisation des processus des écosystèmes fluviaux. La principale raison pour laquelle les modifications du castor perturbent autant le RCC est due à l'étendue croissante des eaux de surface retenues derrière les barrages individuels et collectivement au sein des complexes de barrages de castor, qui constituent un changement brusque d'échelle de portée de presque exclusivement lotique (eau courante) à un mélange complexe de conditions lentiques (eau calme) et lotiques et de transitions entre elles. Cette variation entre les écosystèmes lotiques et lentiques a été couverte dans des modèles conceptuels qui incluent des barrages anthropiques dans des systèmes fluviaux régulés (par exemple : le concept de discontinuité en série de Ward et Stanford, 1995), mais l'échelle et le nombre de transitions lentiques-lotiques sont probablement très différents. entre les étangs de castors et les réservoirs artificiels. Ainsi, en s'appuyant sur ces concepts, ainsi que sur le concept de patch dynamique en écologie fluviale (Poole, 2002), Burchsted et al. (2010) ont présenté un cadre écologique élégant qui reconnaît les castors comme le perturbateur consommé des continuums fluviaux. Ce paradigme d'écosystème fluvial discontinu reconnaît l'inégalité des transitions lotiques-lentiques fournies par les barrages de castor sur des échelles de portée, et l'évolution temporelle d'un tel système vers des corridors fluviaux plus ouverts composés d'habitats de zones humides et de prairies plutôt que de hautes forêts riveraines (Burchsted et al. , 2010)."



Paysage de rivières à castors, extrait de Larsen et al 2021, art cit.

Sur la comparaison des barrages de castors et des barrages d'humains, les chercheurs font les observations suivantes dans l'évaluation des capacités de stockage d'eau :
"La capacité de stockage des plaines inondables peut être encore améliorée à mesure que les castors modifient leur habitat, par exemple en creusant de petits réseaux de canaux et d'étangs dans les plaines inondables (Johnston et Naiman, 1990a, Johnston et Naiman, 1990b; Stocker, 1985). Bien que la capacité de stockage en surface des barrages de castors individuels (étang et plaine inondable) soit faible par rapport aux réservoirs artificiels, les stockages en surface cumulés de plusieurs barrages dans une cascade de barrages de castors peuvent augmenter considérablement leur impact hydrologique (Fig. 6a et b) (Puttock et al., 2017 ; Nyssen et al., 2011). Les estimations publiées de la densité des barrages varient entre moins de 1 (par exemple 0,1) et > 70 barrages par km de tronçon de rivière (Gurnell, 1998 ; Pollock et al., 2003 ; Zavyalov, 2014), bien que des estimations de densité considérablement plus faibles aient été compilées par Johnston (2017). ). À des densités élevées, même de petites capacités de stockage de barrages individuels (L3) par rapport aux débits entrants (L3T−1) peuvent, dans l'ensemble, modifier considérablement les bilans hydriques, les temps de séjour de l'eau et les régimes d'écoulement. (...)
Il existe au moins quatre façons dont la comparaison entre les barrages de castor et les réservoirs ou déversoirs artificiels divergent, avec des implications importantes pour l'interprétation de la dynamique de stockage. Premièrement, la structure du barrage elle-même est perméable (Burchsted et al., 2010) et apportera une contribution largement inconnue aux débits sortants (discuté dans la section ci-dessous). Deuxièmement, la hauteur relativement faible du barrage par rapport à la largeur de la vallée entraîne des rapports surface/volume très élevés qui peuvent accroître les pertes par infiltration et évaporation. Troisièmement, les barrages de castor sont généralement construits dans des vallées alluviales de débit modéré à faible (Pollock et al., 2003 ; Suzuki et McComb, 1998), des conditions favorables à une connectivité hydraulique plus élevée entre les aquifères alluviaux superficiels et peu profonds. Cela signifie que les changements de volume de stockage souterrain ont le potentiel d'être comparables, voire supérieurs, aux changements de volume de stockage de surface, un point abordé plus en détail dans la section 2.5 sur la connectivité entre la surface et les eaux souterraines. Enfin, l'emplacement physique des barrages de castors peut être très dynamique dans l'espace et dans le temps, ajoutant une complexité importante à la façon dont les changements de stockage évoluent dans les tronçons de rivière, en particulier ceux avec plusieurs barrages sur de courtes distances. Tous ces processus peuvent modifier la dynamique du stockage de l'eau dans les bassins versants et avoir des implications importantes sur la façon dont le cycle hydrologique est équilibré sur une gamme d'échelles de temps."

Discussion
Contrairement à ce que laissent entendre certains critiques, les chercheurs comparent couramment les barrages de castors et les barrages des humains. La raison en est simple : ces artifices partagent des propriétés, comme la création d'un obstacle à l'écoulement en long, d'une différence de hauteur entre l'amont et l'aval, d'un plan d'eau n'ayant plus les mêmes propriétés physiques, chimiques, biologiques que l'eau courante. Si différents barrages ont différentes propriétés – c'est aussi vrai pour la diversité des barrages humains allant du seuil de 30 cm de hauteur au grand barrage de 300 m de hauteur –, il n'en reste pas moins que ce sont d'abord des barrages, avec des implications physiques similaires en premier ordre. 

Parmi ces implications, l'une d'elles nous intéresse particulièrement : la capacité à retenir et divertir l'eau, au lieu que la rivière soit vue comme un canal d'évacuation rapide des eaux vers l'aval. On ne sera pas surpris de constater que le bilan des barrages et retenues de castor est favorable à la préservation de l'eau dans les bassins versants. Mais davantage que certains chercheurs laissent entendre que des barrages et retenues humains ne pourraient pas avoir le même effet.

Le "libre écoulement" de la rivière est un motif ancien des politiques publiques de l'eau (notamment en raison du blâme qui a longtemps frappé les eaux stagnantes et leurs problèmes sanitaires), mais ce n'est pas spécialement le régime naturel de cette rivière, au moins là où on laisserait libre cours aux forêts et aux castors. L'idée d'un petit cours d'eau à écoulement rapide, rives dégagées et méandres paisibles est en fait une esthétique fluviale tardive (18e-19e siècles), à l'époque où les bassins versants sont déjà très modifiés (voir Lespez et al 2015, Brown et al 2018) : à cette époque, les forêts comme les castors ont largement disparu ; l'agriculture a colonisé la plupart des bassins de plaine avec élévations de berges et digues, chenalisations et incisions de lits ; les retenues (et canaux) des moulins, forges, étangs et autres ouvrages hydrauliques ont remplacé de manière plus permanente les artifices des castors. Un bassin versant réellement "naturel" au sens de non modifié dans ses écoulements par intervention humaine ressemblerait plutôt dans nos régions à un chaos de barrages d'embâcles et de castors, avec des débordements récurrents, des marécages en forêt humide, des lits instables d'une année l'autre, des plans d'eau aussi nombreux que les zones rapides. Rien à voir avec la "nature" de carte postale qui est le plus souvent promue par les politiques de "renaturation". Ni avec la rivière souhaitée par certains lobbies (comme les pêcheurs de salmonidés) qui naturalisent ce qui correspond à leurs usages particuliers et à un style tardif des rivières.

28/03/2023

Les seuils et ouvrages en rivière aident à stocker l'eau face aux sécheresses

Un ouvrage en lit mineur de rivière ralentit, retient et infiltre l'eau. C'est vrai pour les ouvrages de castors comme pour ceux des humains. Le mouvement de défense des ouvrages hydrauliques le sait bien, mais il affronte un déni totalement aberrant de la part des pouvoirs publics en charge de l'eau et de la biodiversité, qui s'obstinent à nier, minimiser ou invisibiliser les intérêts des seuils et barrages.  Toutefois, lors d'une audition au Sénat, c'est la pdg du Bureau des ressources géologiques et minières (BRGM) qui a cru bon rappeler aux parlementaires les règles élémentaires de l'hydrologie, et notamment ce rôle des seuils. Les élus vont-ils en tirer la conclusion qui s'impose, à savoir valoriser et non plus vandaliser ces ouvrages? 



En février dernier, le Sénat a créé une mission d’information intitulée : "Gestion durable de l'eau : l'urgence d'agir pour nos usages, nos territoires et notre environnement". Le 15 mars, cette mission auditionnait les experts en hydrogéologie du Bureau de recherches géologiques et minières.

A cette occasion, une mise au point intéressante a été faite : "Sur un sujet qui est polémique dans le domaine de l'eau, sur le sujet des obstacles ou seuils en rivières, quand il y a des seuils l'eau stagne un peu et donc cela s'infiltre davantage", a expliqué Michèle Rousseau (présidente-directrice générale du BRGM), en faisant le panorama des possibilités d'amélioration du stockage de l'eau en France métropolitaine.

En fait, ce phénomène est connu. Dans le monde naturel de l'aire européenne et nord-américaine, ce sont les barrages en série de castors qui jouent ce rôle de création de multiples retenues par petits barrages, et tous les travaux étudiant le phénomène concluent que ces aménagements ont un bilan hydrologique positif, tant pour l'infiltration dans les sols que pour les débordements par rehausse de niveau de la lame d'eau (voir nos publications sur le thème castor).  

Les propriétaires ou riverains de retenues et de biefs observent eux aussi le phénomène : si le niveau est baissé un certain temps par ouverture de vanne, alors le niveau des puits baissent, comme celui des éventuelles zones humides d'accompagnement à eau affleurante de type mare, prairie humide. Au demeurant, quand un projet d'aménagement de seuil concerne une retenue en zone de captage, des relevés piézométriques sont faits et la conclusion est immanquablement que le niveau du captage va baisser en cas d'effacement de la retenue et d'abaissement de sa ligne d'eau. On peut aussi lire la remarquable monographie de l'ingénieur public Pierre Potherat, qui a documenté le rôle des ouvrages dans le cas particulier des bassins sédimentaires des sources de la Seine et de l'Ource (voir cette recension). 


Ces constats n'ont rien d'extraordinaire, ils relèvent de lois bien connues en hydrostatique et hydrodynamique depuis le 19e siècle.

Ce qui est assez extraordinaire en revanche, c'est la politique de déni de ces réalités par les politiques publiques de l'eau, qui sont en France et pour partie en Europe arcboutées sur le nouveau dogme de la "continuité écologique", vu sous l'angle de l'effacement des ouvrages humains et du retour à une supposée "naturalité" de type sauvage. 

Refusant de reconnaître le moindre élément négatif de ce choix public, ces politiques passent sous silence le rôle des ouvrages dans la rétention et régulation de l'eau. Elles ne parlent immanquablement que de l'évaporation – comme si une zone humide naturelle ou une prairie ou une forêt n'évaporaient pas aussi en été, par un étonnant miracle physique! En fait, des travaux de recherche scientifique ont quantifié toutes ces évaporations et montré qu'elles sont du même ordre de grandeur, voire pire dans le cas de milieux naturels (cf Al Domany et al 2020).

La politique de continuité écologique est devenue le faux-nez d'une écologie assez radicale et polémique, dont la philosophie sous-jacente entend diaboliser et interdire la présence humaine au bord des rivières. Non seulement elle est nuisible à la régulation de l'eau alors que nous affrontons une multiplication des risques crues et sécheresses, mais elle heurte de nombreuses autres dimensions qui concourent à l'intérêt général et au bénéfice des riverains : patrimoine historique, culturel et paysager, production d'énergie renouvelable locale, réserve incendie, stockage pour abreuvement et irrigation, adaptation climatique, usages partagés. 

Nous demandons donc à nouveau à l'administration eau et biodiversité de respecter le choix parlementaire plusieurs fois réaffirmé de la nécessité de préserver, valoriser et exploiter les ouvrages hydrauliques, au lieu d'envisager leur effacement au nom d'un idéal non légal et non légitime de retour à la rivière sauvage. Nous demandons également au financeur public de solvabiliser les aménagements écologiques de ces ouvrages, qui optimisent certaines dimensions environnementales (franchissement piscicole, transit sédimentaire) sans en perdre les avantages. Nous demandons enfin une politique positive et intelligente des ouvrages hydrauliques, car l'amélioration de leur gestion et la responsabilisation de leur propriétaire sont un vrai enjeu public, bien plus nécessaire que la tentative d'ores et déjà ratée de détruire et assécher ces biens utiles. 

22/03/2023

La complexité des relations nappes-rivières dans les crues et sécheresses (Pelletier et Andréassian 2023)

En ces temps de sécheresse hivernale laissant craindre un été très sec, on parle beaucoup de la question des nappes. Une étude menée par des hydrologues montre que la relation entre nappe, crue et sécheresse est toutefois complexe et dépend de la géologie locale. Le travail distingue 5 sous-groupes selon le niveau de corrélation entre l’état de l’eau souterraine et le comportement de l’eau de surface, notamment lors des événements extrêmes qui inquiètent les riverains. Un travail utile pour rappeler d’une part la nécessité de données informant les politiques de l'eau, d’autre part le besoin d’étudier l’eau dans chaque bassin, et non par des excès de généralités. 


Diversité géologique des aquifères et réseau des piézomètres.

Les rapports du GIEC préviennent de longue date : les événements hydrologiques extrêmes seront plus intenses et/ou plus fréquents dans un climat modifié disposant de davantage d’énergie pour évaporer et transporter l'eau tout en modifiant les cycles régionaux de circulation océanique et atmosphérique. Pour s’adapter, il faut anticiper. Et pour anticiper, il faut disposer de modèles efficaces des crues et sécheresses, incluant aussi l’eau invisible qui est dans les nappes souterraines. Antoine Pelletier et Vazken Andréassian (Ecole des Ponts, U. Paris Saclay) ont posé une brique de ce travail en analysant les relations entre aquifères, crues et sécheresse dans des bassins représentatifs de la diversité géologique de la France métropolitaine. 

Voici le résumé de leur étude :
« Le rôle des aquifères dans les événements hydrologiques extrêmes a été souligné dans divers contextes, tant pour les crues que pour les étiages. De nombreux aquifères sont surveillés par des réseaux de piézomètres, qui mesurent le niveau piézométrique : là où de longues chroniques sont disponibles, une analyse conjointe avec les séries de débits observés est possible. Pourtant, les données de niveaux piézométriques sont rarement utilisées en modélisation hydrologique de surface, à cause de la grande complexité des relations nappes–rivières. Nous proposons ici une simple étude de corrélation entre les extrema annuels de la piézométrie et du débit, entreprise sur un ensemble de 107 bassins versants et 355 piézomètres, répartis sur l’ensemble du territoire de France métropolitaine. Avec cette étude, il est possible de distinguer les aquifères où la piézométrie est corrélée uniquement avec les crues, uniquement avec les étiages, avec les deux ou avec aucun des deux. Cette catégorisation ouvre de nouvelles opportunités pour caractériser la relation nappe–rivière, ce qui peut être crucial pour comprendre les événements hydrologiques extrêmes. »
L'analyse en sous-groupes selon le contexte géologique montre des schémas divers : certains aquifères d'échelle régionale ont une réponse univoque à la fois aux événements d'étiage et de haut débit, tandis que d'autres ne répondent qu'à un type d'événement, et certains ne semblent pas suivre une trajectoire liée à des événements fluviaux. 

Voici les 5 groupes de relation nappe-rivière identifiés :
  • groupes à fortes corrélations pour les sécheresses et les inondations : mélasse du Dauphiné et craie picarde ;
  • groupes à fortes corrélations pour les crues et comportement incertain pour les sécheresses : plaine d'Alsace, craie de Champagne et de Bourgogne, craie du Nord, Jurassique du Bassin parisien ;
  • groupes à fortes corrélations pour les sécheresses et comportement incertain pour les crues : aquifères tertiaires du bassin parisien, craie normande, aquifères du bassin secondaire aquitain ;
  • groupe à faibles corrélations pour les sécheresses et les inondations : graves du graben de la Dombes et de la Bresse ;
  • groupes au comportement incertain à la fois en crue et en sécheresse : sables crétacés du bassin parisien, aquifères triasiques et soubassements, aquifère multicouche cénozoïque, craie du bassin ligérien.
Les auteurs observent : « la mise en place d'une modélisation couplée fleuve/eaux souterraines est généralement une tâche complexe et conséquente et ce type d'analyse préalable permet d'évaluer la pertinence d'un tel établissement à des fins de modélisation opérationnelle, comme la prévision des crues et des sécheresses. Par exemple, la remarquable corrélation entre les faibles niveaux d'eau souterraine et les événements de sécheresse hydrologique dans la région de la Beauce et de son aquifère tertiaire montre la nécessité d'inclure dans un modèle la composante souterraine du cycle de l'eau — voir, par ex. Flipo et al. [2012] pour un exemple de modélisation couplée. Un autre cas intéressant est la nappe de craie, du fait de la variabilité spatiale de son comportement – elle a été identifiée comme le principal habitat des monstres hydrologiques [Le Moine et Andréassian, 2008], c'est-à-dire des bassins versants dans lesquels l'écoulement est particulièrement difficile à simuler et prédire  pour les modèles hydrologiques. La zone de craie peut également bénéficier d'approches de modélisation utilisant des informations sur le niveau des eaux souterraines, mais pas dans toutes les régions. Il est également à noter que plusieurs aquifères, bien que d'importance majeure pour les ressources en eau régionales, présentent des relations équivoques avec les eaux de surface, par exemple les sables du Perche du Cénomanien et les grès du Trias vosgien.»

En conclusion, ils soulignent la nécessité d'avoir une politique cohérente d'acquisition de données pour nourrir des politiques de l'eau informées et adaptatives : «Comme dernière recommandation, nous encourageons le développement de mesures de niveau des eaux souterraines à long terme et à haute fréquence dans les bassins hydrographiques jaugés, pour que les hydrologues de surface puissent mener des études approfondies de modélisation couplée.»

Référence : Pelletier A, V  Andréassian (2023), An underground view of surface hydrology: what can piezometers tell us about river floods and droughts?, Comptes Rendus. Géoscience, 355,S1, 1-11

28/01/2023

Que nous dit un demi-siècle d'analyse des sécheresses en France et en Europe? (Peña‐Angulo et al 2022)

La sécheresse est l'un des aléas naturels les plus dommageables et les plus récurrents, avec des impacts socio-économiques et écologiques dévastateurs. Caractériser la gravité et le risque de sécheresse est donc un enjeu majeur. Des chercheurs européens viennent de publier une étude détaillée de 55 ans d'évolution des débits des cours d'eau, sur plus de 3000 points de mesure. Pour la France, le bilan ne se résume pas en une seule tendance claire : des bassins voient s'aggraver l'amplitude de la sécheresse, d'autres ont davantage d'eau. Il tend à tomber davantage d'eau dans les mois d'hiver et de début  de printemps, alors que l'été et l'automne évoluent vers de moins de précipitations. La gestion hydrologique des sécheresses comme des crues va être déterminante dans les décennies à venir, avec en toile de fond le dérèglement climatique qui aggrave les probabilités de phénomènes extrêmes. 

L'évolution de la sécheresse est influencée par plusieurs variables hydrométéorologiques (précipitations, évapotranspiration, ruissellement) et anthropiques (démographie, occupation des sols,  usages domestiques, agricoles et industriels de l'eau dans chaque bassin), ce qui complique l'évaluation du phénomène. Il existe en fait différents types de sécheresse : météorologique, hydrologique, agricole et socio-économique. Parmi elles, les sécheresses hydrologiques préoccupent particulièrement les décideurs politiques, en raison de la dépendance de la société et des écosystèmes à la disponibilité de l'eau dans les rivières et les aquifères.

Une équipe de chercheurs européens a analysé les tendances des observations hydrologiques sur un ensemble de stations présentant une bonne cohérence des données de 1962 à nos jours. 

Voici le résumé de leur étude :
"Cette étude présente un nouvel ensemble de données de débit mesuré (N = 3 224) pour l'Europe couvrant la période 1962-2017. L'ensemble de données Monthly Streamflow of Europe (MSED) est disponible gratuitement sur http://msed.csic. es/. Sur la base de cet ensemble de données, les changements dans les caractéristiques de la sécheresse hydrologique (c'est-à-dire la fréquence, la durée et la gravité) ont été évalués pour différentes régions d'Europe. En raison de la densité de la base de données, il est possible de délimiter les schémas spatiaux de la tendance des sécheresses hydrologiques avec le plus de détails disponibles à ce jour. Les résultats révèlent des changements bidirectionnels dans le débit mensuel, avec des changements négatifs prédominant sur l'Europe centrale et méridionale, tandis que les tendances positives dominent sur l'Europe du Nord. Temporellement, deux modèles dominants ont été notés. Le premier schéma correspond à une tendance à la baisse constante tous les mois, évidente pour l'Europe du Sud. Une deuxième tendance a été observée sur l'Europe centrale et septentrionale et l'ouest de la France, avec une tendance négative prédominante pendant les mois chauds et une tendance positive pendant les mois froids. Pour les événements de sécheresse hydrologique, les résultats suggèrent une tendance positive vers des sécheresses plus fréquentes et plus sévères dans le sud et le centre de l'Europe et inversement une tendance négative dans le nord de l'Europe. Cette étude souligne que les sécheresses hydrologiques montrent des schémas spatiaux complexes à travers l'Europe au cours des six dernières décennies, ce qui implique que le comportement de la sécheresse hydrologique en Europe a un caractère régional. En conséquence, il est difficile d'adopter des stratégies et des politiques « efficaces » pour surveiller et atténuer les impacts de la sécheresse au niveau continental."
Concernant la région de France métropolitaine en particulier, quelques graphiques aident à comprendre les évolutions observables sur un demi-siècle.


Sur la carte ci-dessus, les pointillés représentent des stations de mesure des débits des rivières, les couleurs représentent des ensembles cohérents (clusters) en comportement hydrologique. On voit que la France est divisée en trois zones suivant grosso modo un gradient Nord-Sud. 

Cette autre carte montre à droite la tendance en magnitude du changement (point rouge sécheresse plus marquée, point bleu sécheresse moins marquée), à gauche le caractère significatif ou non (au plan statistique) de la tendance. On voit que le nord et le sud de l'Europe ont des tendance assez claires (vers moins ou plus de sécheresse), mais que la France est une zone d'entre-deux, avec des zones qui s'assèchent au sud mais beaucoup d'autres qui n'ont pas de tendance claire, voire qui ont une tendance à la hausse des débits.


Enfin, cette carte informe la distribution temporelle (par mois) des débits. Le point notable pour la France est qu'il y a une tendance à l'excès d'eau (point bleu) entre décembre et mars, avec là encore des différences entre territoires, mais une tendance à la baisse les autres mois, en particulier de juin à octobre. La saisonnalité des pluies est donc davantage marquée.

Discussion
Les données relevées par Dhais Peña‐Angulo et ses collègues confirment de nombreux autres travaux en climatologie et hydrologie (voir cette synthèse). Pour la gestion quantitative et qualitative de l'eau, nous devons en retenir plusieurs choses :
  • l'avenir hydrologique de la France (et de l'Europe) est un sujet sérieux, les grandes sécheresses de ces dernières années ne sont pas des anomalies imprévisibles, mais des cas extrêmes pouvant devenir plus fréquents et plus intenses dans les prochaines décennies;
  • l'approche territoriale est indispensable, non seulement parce que chaque bassin versant a sa signature unique en hydrologie, géologie, climatologie, écologie et usages humains, mais aussi parce que les tendances sont différenciées sur le territoire français (on ne peut énoncer des constats et prédictions qui seraient valables en Bretagne comme en Corse, dans les Vosges comme dans les Pyrénées);
  • les tendances observables sur de nombreux territoires (hausse de l'eau disponible en hiver, baisse en été) suggèrent la nécessité de développer des choix appropriés de stockage de l'eau hivernale, selon des options pouvant relever de solutions fondées sur la nature ou sur la technique ;
  • au-delà des tendances et des moyennes, le dimensionnement de la réflexion, de l'occupation et usage des sols, des équipements de maîtrise hydrologique doit aussi intégrer les phénomènes extrêmes ponctuels (une sécheresse très prononcées sur 2, 3, 4 ans, une crue intense de dimension millénale ou davantage).
Référence : Peña‐Angulo Dhais et al. (2022), The complex and spatially diverse patterns of hydrological droughts across Europe, Water Resources Research; 58, 4, e2022WR031976.

A lire sur le même thème

27/07/2022

Les barrages de castors bénéfiques pour la quantité et la qualité d'eau en tête de bassin versant (Dittbrenner et al 2022)

Les castors et les humains sont les deux seules espèces capables de construire des retenues et diversions d'eau sur le lit mineur des rivières. Une nouvelle étude nord-américaine confirme, après de nombreuses autres, que la formation des retenues par barrages de castor tend à augmenter le stockage local de l'eau dans les sols et nappes, ainsi dans le cas étudié qu'à baisser la température de l'eau. Les chercheurs jugent ce bilan très bénéfique, notamment en situation de changement climatique qui réduit le débit des petites rivières de tête de bassin.  Ces travaux contredisent évidemment le dogme du libre écoulement des eaux selon lequel tout obstacle en rivière est un drame écologique, et toute retenue une somme d'effets uniquement négatifs. L'état normal d'une rivière est plutôt d'être parsemée de tels obstacles, qu'ils proviennent de castors, d'humains, d'embâcles, d'éboulis ou autres causes ni plus ni moins naturelles les unes que les autres.


La rivière avant et après la création de barrages et retenues par les castors, extrait de Dittbrenner  et al 2022, art cit.

Longtemps présent en abondance dans les ruisseaux et rivières de l'hémisphère Nord, les castors américains (Castor canadensis) et eurasiens (Castor fiber) ont connu une régression forte de l'Antiquité au 20e siècle, au point de frôler l'extinction. Désormais protégées, ces espèces ont entamé une reconquête progressive des vallées où elles vivaient, du moins celles qui présentent encore des biotopes favorables à leur cycle de vie. C'est le cas en particulier des têtes de bassin qui sont restées boisées.

Les castors se caractérisent par la construction de barrages, digues, canaux, huttes qui forment leur territoire. C'est la seule espèce avec la nôtre qui crée des plans d'eau par barrages. Les écologues et hydrologues s'intéressent aux castors pour comprendre l'impact des retenues d'eau qu'ils bâtissent.  Benjamin J. Dittbrenner et ses collègues ont analysé des bassins versants aux Etats-Unis en phase de reconquête par une colonie de castors. 

Voici le résumé de leur travail

"De nombreuses régions connaissent une augmentation des températures des cours d'eau en raison du changement climatique, et certaines connaissent une réduction des débits des cours d'eau en été et de la disponibilité de l'eau. Étant donné que la construction de barrages et la formation de retenues par le castor peuvent augmenter le stockage de l'eau, le refroidissement des cours d'eau et la résilience de l'écosystème riverain, le castor a été proposé comme un outil potentiel d'adaptation au climat. Malgré le grand nombre d'études qui ont évalué comment l'activité des castors peut affecter l'hydrologie et la température de l'eau, peu d'études expérimentales ont quantifié ces résultats après la relocalisation des castors. 

Nous avons évalué les changements de température et de stockage de l'eau suite à la relocalisation de 69 castors dans 13 cours d'eau d'amont du bassin versant de la rivière Skykomish dans le bassin de la rivière Snohomish, Washington, États-Unis. Nous avons évalué comment les barrages de castors affectaient le stockage des eaux de surface et souterraines et la température des cours d'eau. Les relocalisations réussies ont créé 243 m3 de stockage d'eau de surface par 100 m de cours d'eau au cours de la première année suivant la relocalisation. Les barrages ont augmenté l'élévation de la nappe phréatique jusqu'à 0,33 m et stocké environ 2,4 fois plus d'eau souterraine que d'eau de surface par tronçon de relocalisation. Les tronçons de cours d'eau en aval des barrages ont affiché une diminution moyenne de 2,3 °C pendant les conditions de débit de base en été. Nous avons également évalué comment les dommages, l'état, la fréquence d'entretien et la morphologie des étangs influençaient la température des cours d'eau dans les complexes de milieux humides naturellement colonisés. 

Nos résultats démontrent que la construction de barrages peut augmenter le stockage de l'eau et réduire les températures des cours d'eau au cours de la première année suivant la relocalisation réussie des castors. La morphologie fluviale et des plaines inondables des tronçons candidats à la relocalisation est une considération importante car elle détermine le type et l'ampleur de la réponse. La relocalisation vers des tronçons avec de petites retenues abandonnées existantes peut répondre aux critères thermiques en convertissant des tronçons de réchauffement en tronçons de refroidissement, tandis que la relocalisation dans de grands complexes abandonnés ou un habitat vacant peut entraîner un plus grand stockage de l'eau. Bien que la relocalisation des castors puisse être une stratégie d'adaptation climatique efficace pour conserver des régimes hydrologiques et une qualité de l'eau plus stables dans notre zone d'étude, il semble y avoir des facteurs environnementaux et géomorphologiques spécifiques à la région qui influencent la façon dont les castors affectent stockage et température de l'eau. Des recherches supplémentaires sont nécessaires pour déterminer comment et pourquoi ces différences régionales affectent le stockage de l'eau et la réponse de la température des cours d'eau dans les systèmes influencés par le castor."

Les auteurs rappellent que leurs analyses confirment de nombreux travaux antérieurs : "Il a été démontré que les complexes de castor augmentent considérablement le potentiel de stockage des eaux de surface et souterraines. On estime que, dans le monde entier, les complexes de castors stockent jusqu'à 11 km3 d'eau de surface (Karran et al., 2016) avec jusqu'à 30 % de l'eau de surface d'un cours d'eau stockée dans des retenues de castors (Duncan, 1984). Des études ont montré que le castor augmentait la largeur des zones riveraines le long des cours d'eau de 11 à 34 m (McKinstry et al., 2001), et dans les tronçons en aval des barrages, le volume des bassins augmentait également (Stack & Beschta, 1989). On a constaté que les tronçons de cours d'eau endigués étendaient l'étendue latérale de la zone hyporhéique jusqu'à 8 m au-delà des tronçons de contrôle à partir d'une largeur de 0,2 m avant la construction du barrage (Shaw, 2009), tandis que les retenues plus grandes étendaient l'étendue des eaux souterraines de plus de 50 m ( 10 m dans les tronçons témoins ; Lowry, 1993). Cependant, en raison de la complexité et de la grande variabilité de la géologie locale, du relief, du type de sol et d'autres caractéristiques morphologiques, les estimations du stockage total sont difficiles à quantifier. Bien que la plupart des études existantes aient documenté le stockage dans des complexes de castor bien établis, les effets du déplacement du castor sur le stockage des eaux de surface et souterraines restent sous-étudiés."

Concernant la température, les auteurs soulignent la dépendance au contexte local et la nécessité de bien fixer l'échelle de l'analyse thermique, en tenant compte notamment des remontées de nappes : "Les effets des barrages de castors sur la température des cours d'eau sont également très variables d'une étude à l'autre selon l'emplacement et la méthodologie d'étude. Des recherches antérieures ont trouvé des preuves de réchauffement (Avery, 2002; Patterson, 1951), de refroidissement (White, 1990), de réchauffement ou de refroidissement selon la saison (Avery, 1983), ou d'absence de relation entre la présence d'un barrage et la température (McRae & Edwards, 1994 ). Dans les systèmes d'amont à plus haute altitude, où les cours d'eau sont relativement froids, des augmentations de température de 6 à 9 °C ont été observées en aval des étangs de castors (Margolis et al., 2001). Des études plus récentes ont évalué les températures des cours d'eau à plus grande échelle et ont constaté que les étangs de castors peuvent également avoir un effet de refroidissement net (Weber et al., 2017; White et Rahel, 2008) en raison de la recharge et de la remontée d'eau souterraine (Pollock et al., 2007)"

Discussion
Le castor nord-américain bâtit des barrages de plus grande dimension que le castor européen, mais les deux espèces utilisent cette même stratégie de construction de niche pour remodeler les rivières. 

Le point évidemment étonnant de ces études sur le castor, c'est qu'elles contredisent totalement le discours dogmatique sur la nécessité d'un libre écoulement parfait des eaux de surface au nom de la continuité écologique des rivières. Dans la réalité, les rivières même sans humains sont cesse fragmentées, par des barrages d'embâcles, d'éboulis ou de castors. Leur lit est loin d'être le petit chenal lotique encaissé et sinueux que l'on montre souvent comme exemple de rivières "naturelles" alors que c'est un style fluvial tardif issu de l'exploitation humaine des bassins versants (voir Lespez et al 2015).

Si le petit barrage de castor diffère évidemment du petit barrage humain par sa conception, il est notable que de nombreuses propriétés et fonctionnalités hydrologiques sont semblables : hausse de la lame d'eau, élargissement du lit en eau sur l'emprise de la retenue, débordement locaux an amont si le foncier est prévu pour l'accueillir (ou diversion dans des canaux latéraux, sachant que le castor lui aussi est capable de creuser ces annexes hydrauliques). Au demeurant, d'autre travaux de recherche ont montré que la destruction des ouvrages humains mène à des incisions de lit, moindres débordements et moindres recharges de nappes (Maaß et Schüttrumpf 2019, Podgórski et Szatten 2020). Les mêmes causes produisent les mêmes effets.

L'image ci-dessous montre une succession de petits plans d'eau humains en tête de bassin, sur une carte ancienne (Cassini, 18e siècle). Nos ancêtres, comme les castors, avaient une certaine intuition des moyens de retenir et gérer l'eau dans les bassins versants...

Référence : Dittbrenner BJ et al (2022), Relocated beaver can increase water storage and decrease stream temperature in headwater streams, Ecosphere, 13, 7, e4168


Succession de plans d'eau humains dans un aménagement d'Ancien Régime en tête de bassin.

23/02/2022

Quand riverains et usagers des canaux résistent à la normalisation administrative de la nature (Collard et al 2021)

Les béals sont des canaux gravitaires d'irrigation traditionnelle en Cévennes, avec un seuil qui détourne la rivière vers de multiples parcelles. Une sociologue et deux géographes ont analysé la mise en oeuvre des nouvelles normes administratives en écologie aquatique, issues des lois françaises et de la directive européenne sur l'eau. Les chercheurs relèvent des différences de perception de la nature chez les acteurs, ainsi qu'une difficulté à mettre en adéquation des propos théoriques sur le fonctionnement idéal de cette nature avec la réalité complexe des nouveaux écosystèmes issus des usages humains.


Aquarelles originales : Nicolas De Faver, Source : Livret "Béals et pesquiers dans la vallée du Gijou", ATASEA


Anne-Laure Collard, François Molle et Anne Rivière-Honegger (université Montpellier, CNRS, IRD, ENS Lyon) ont analysé la mise en oeuvre des nouvelles normes sur l'eau (directive européenne 2000, lois de 1992, 2006) dans les canaux d’irrigation gravitaire anciens de la Haute Vallée de la Cèze, en Cévennes gardoises. Ces canaux y sont appelés béals et maillent historiquement le territoire de moyenne montagne.

L'imposition d'une règlementation administrative se fait par des outils de gestion qui comportent des volets d'obligations et de préconisations : classement en Zone de Répartition des Eaux (ZRE), nécessité d'un Plan de Gestion de la Ressource en Eau (PGRE). L'argument est celui de la "modernisation" imposée aux associations d’irrigants (ASA, établissements réunissant des propriétaires privés sous tutelle du préfet) ou à des particuliers. Mais cette évolution ne se passe pas toujours bien.

Une première friction concerne l'effet de découragement lié à des procédures : "Le béal est une affaire locale et familiale. À ce titre, la modernisation n’est pas toujours bien reçue, car interprétée comme une complexification bureaucratique qui mine le «plaisir» pris à s’en occuper. En pratique, des procédures doivent être suivies telles que la rédaction d’un compte-rendu des Assemblées générales, la tenue d’une comptabilité et d’un suivi quantitatif des prélèvements engendrant des frais supplémentaires. Cette administration est aussi vécue comme une négation des dimensions flexibles et négociables des modalités de gestion de l’eau."

En outre, des choix sont contestés. La mise en conformité des béals par les ASA est une des conditionnalités d’accès aux aides publiques, avec obligation d'économie d'eau et de continuité écologique. Mais "la plupart des travaux subventionnés consistent à poser des tuyaux en PVC pour améliorer l’efficience du canal. Le béal est ainsi résumé à ses dimensions techniques de dérivation et de distribution de l’eau. Or, pour les habitants rencontrés, les béals sont un «art de vivre» se référant à des valeurs sensorielles et esthétiques, aux sociabilités villageoises". La pose de tuyaux est certes une solution efficace et pratique pour l’entretien du réseau à des endroits difficiles d’accès ou sujets à des pertes, mais le "tout tuyau" n'est pas pour autant apprécié. Et le béal n'est pas réduit dans l'esprit de son riverain à une fonctionnalité monodimensionnelle d'écoulement optimal.

Sur le terrain, il existe une complexité hydrologique et hydraulique des béals, que les études de débit mesurent mal. Plusieurs travaux, de l’Onema et du syndicat de bassin ABCèze laissent entendre que le débit de la rivière dérivée (Gardonnette) se reconstitue d’une prise d'eau à la suivante, ou que l'ouverture / fermeture des béals (sur le bassin du Luech) ne donna pas un résultat des jaugeages concluant. Or, cette incertitude de terrain ne nourrit pas le doute chez tous les acteurs : "malgré ces incertitudes, les convictions de celles et ceux responsables d’appliquer la réglementation ne sont pas ébranlées. La simplification hydraulique est suffisante dès lors qu’elle corrobore les postures individuelles, comme c’est le cas pour cet interlocuteur qui préfère nier le particularisme des béals et considérer que : «globalement, les canaux ont un impact fort sur la ressource en eau. De toute façon, en tout cas pour l’instant, c’est clair [...]» (Entretien Agence de l’Eau, novembre 2018).

Les auteurs pointent que la "continuité écologique" est l'une des dimensions de la normalisation administrative mal vécue sur le terrain. Pourtant, leurs entretiens très intéressants avec les acteurs (y compris publics) montrent que les faits sont loin d'être établis clairement quant à l'impact délétère des seuils et dérivations sur la rivière. Nous citons longuement ce passage qui intéresse de près notre propre réflexion et celle de nos lecteurs :

"Le raisonnement selon lequel l’impact "réel" des béals n’aurait pas vraiment besoin d’être démontré scientifiquement pour être retenu, car relevant du "bon sens", est conforté par les enjeux de continuité écologique. En effet, le béal est aussi envisagé comme un obstacle potentiel, susceptible de court-circuiter la rivière. Cet argument est régulièrement avancé par les acteurs publics rencontrés lorsque celui des prélèvements est trop mis à mal :

« L’eau est mieux dans le cours d’eau plutôt que de rester dans le canal, surtout en période d’étiage où les poissons en ont besoin ». (Entretien DDTM, mai 2019) « Ce que souhaitent l’AFB et l’Agence [de l’Eau], c’est d’essayer de court-circuiter le moins possible toute cette partie en amont. Entre l’amont et les restitutions, "on" prend une grande partie du débit et c’est sur cette partie-là où il ne faudrait pas que le débit de la rivière soit trop réduit ». (Entretien Chambre Agriculture, avril 2018)

Cette définition négative du béal pour les milieux correspond à une lecture centrée sur son potentiel de dérivation du cours d’eau et le risque d’intermittence encouru. Pourtant, l’impact local des seuils n’est pas quantifié, pas plus qu’il n’est envisagé par les acteurs publics familiers du terrain comme un obstacle à la reproduction piscicole ou au transport sédimentaire :

« Oui, quand il y a une crue, il y a deux ou trois seuils qui sont peut-être limites. Mais oui, elles remontent les truites. Elles remontent et elles descendent ». (Entretien AFB, juin 2018) « Même nous, on ne connait pas trop les impacts [des seuils]. Les seuils, une fois qu’ils sont comblés de sédiments, le transport se fait aussi. La vie piscicole en crue, suivant les seuils, ça peut passer. C’est une thématique où le syndicat ne s’est pas trop lancé ». (Entretien ABCèze, mars 2018)

Un pêcheur ajoute « n'avoir jamais vu l’un des siens se plaindre des béals » (Entretien, mai 2019). Ainsi la qualification du béal comme objet externe à la rivière procède d’une simplification hydraulique, elle est aussi la traduction d’une conception administrative de la rivière que l’injonction d’appliquer le cadre de régulation nourrit dans le sens où les agents responsables de faire respecter les réglementations se doivent d’agir, d’impulser une « mise en mouvement » comme l’un d’eux l’exprime, afin de se rapprocher des objectifs identifiés pour l’amélioration du bon état écologique des masses d’eau."

Au final, notent les chercheurs, "selon cette manière de voir, le décompte des « pertes » est important et les restitutions sont ignorées ; la recherche d’économie d’eau, le respect de la continuité écologique comptent, les relations sociales et les histoires locales moins. Selon cette manière de voir, la rivière est une nature «muette et impersonnelle» (Descola, 2005), une «substance fluide» (Helmreich, 2011) que la présence des béals viendrait perturber, et qu’il vaut donc mieux fermer. Ce travail montre comment les savoirs hydrologiques empiriques issus de l’expérience sensible des « gens d’en haut » viennent interroger ceux produits par l’expertise (c’est là un autre nœud de friction). En effet, ces savoirs mettent en avant la complexité des processus de circulation de l’eau entre le lit de la rivière, le sol et le canal, et soulèvent la question du rôle des canaux sur la biodiversité, renseignée par ailleurs (Aspe et al., 2014). Enfin, ce travail montre que les ontologies sensibles et modernes «agissent» sur les réalités des acteurs en présence (Mol, 1999). Pour certains des gestionnaires de l’eau et des agents de l’administration française, les savoirs experts produits simplifient les béals pour les réduire à un prélèvement quelconque en eau, et maîtrisable. Selon une conception sensible, la perméabilité des canaux vue comme dysfonctionnelle par l’administration française est définie comme véritable lien et liant entre les habitants et la rivière, et les béals font la biodiversité locale, car indissociés de la rivière et des milieux."

Et leur mot de conclusion : "Ce travail montre donc l’intérêt de poursuivre les travaux sur les sociétés d’irrigants en mutation, illustrant les difficultés à prendre en compte les savoirs locaux dans la définition et la mise en œuvre des politiques publiques de l’eau, malgré la volonté affichée de le faire ; mais aussi les contradictions inhérentes à toutes les politiques environnementales qui visent à "rationaliser" les pratiques selon des principes uniformes et des paramètres calculés au niveau local dans un contexte de grande incertitude."

Discussion
Cette recherche montre tout l'intérêt de développer des sciences sociales et humanités de l'eau en appui des politiques publiques des rivières, des canaux, des plans d'eau, des écosystèmes originels ou anthropiques. 

D'une part, ces recherches permettent de comprendre le vécu et la perception de l'eau par ses riverains et usagers, dans leur diversité et complexité. Une administration qui aurait été formée à un discours simplificateur de l'eau comme phénomène biophysique ou comme phénomène économique rencontrera résistances et incompréhensions si elle veut plaquer son approche sur le réel. C'est ce qui arrive assez fréquemment aux administrations de l'eau depuis leur "tournant écologique" consécutif à la loi de 1992 (cf sur ce tournant Morandi 2016). Le problème est éventuellement aggravé en France par l'approche souvent verticale et hiérarchique de la gestion publique, là où d'autres pays laissent davantage de libertés aux acteurs locaux pour faire émerger des projets s'ils ont réellement un sens partagé (voir par exemple les observations en ce sens dans la thèse de Drapier 2019 sur la comparaison France - Etats-Unis et dans celle de Perrin 2018 sur les conditions de gouvernance durable de l'eau).

D'autre part, ces recherches mènent à interroger ce que signifie la "nature" des sciences de la nature. Les politiques publiques de l'écologie ont été menées en Europe et en France sur un mode assez technocratique, avec des batteries d'indicateurs et métriques visant à une normalisation et à une certification de résultat. Mais il y a beaucoup de trous dans la raquette. Des limnologues avaient par exemple montré qu'un demi-million de plans d'eau en France sont devenus invisibles au regard des nomenclatures de la DCE dans son interprétation française, alors même que ces milieux ont une existence singulière au plan de l'hydrologie, des fonctionnalités, de la biodiversité (voir Touchart et Bartout 2020). Ces milieux invisibilisés deviennent des anomalies, car la nomenclature attend uniquement une "masse d'eau rivière" dans l'ignorance des évolutions historiques de ladite masse d'eau, qui est en fait devenue au fil du temps une "rivière avec des retenues et des canaux". Un certain discours de l'écologie de la conservation, en affirmant que seule valait comme référence normative et biophysique une "nature sans humain", a joué un rôle négatif de ce point de vue, en évacuant comme non pertinente l'étude des écosystèmes réels, y compris ceux de milieux anthropisés.

Référence : Collard AL, Molle F et Rivière-Honegger A (2021), Manières de voir, manières de faire : moderniser les canaux gravitaires, VertigO - la revue électronique en sciences de l'environnement, 21, 2

A lire sur le même thème