Affichage des articles dont le libellé est Hydromorphologie. Afficher tous les articles
Affichage des articles dont le libellé est Hydromorphologie. Afficher tous les articles

16/05/2023

Le retour des castors oblige à repenser le concept de continuité de la rivière (Larsen et al 2021)

Ayant décliné depuis quelques millénaires et frôlé l'extinction à l'âge moderne, puis ayant bénéficié de protection stricte au 20e siècle, le castor fait désormais son grand retour dans l'aire américaine (Castor canadensis) et l'aire européenne (Castor fiber). Les chercheurs constatent que les bassins versants favorables au rongeur aquatique sont alors parsemés de nombreux barrages formant des plans d'eau et modifiant substantiellement le régime d'écoulement de la rivière, ses connexions au lit majeur comme aux aquifères. Cette observation empirique conduit à réviser le concept de continuité de la rivière, car la réalité historique des cours d'eau dans les zones à castor a sans doute été une série de discontinuités. Rien à voir avec la carte postale formant souvent vitrine des politiques de renaturation et de continuité dite "écologique", où l'on voit des petites rivières dégagées et s'écoulant sagement dans un lit sans aucun obstacle. Une image d'Epinal davantage qu'une réalité scientifiquement validée.



Trois spécialistes (Annegret Larsen, Joshua R. Larsen et Stuart N. Lane) ont proposé une synthèse de la littérature savante sur les effets hydrologiques et géomorphologiques des barrages de castors. Voici le résumé de leur recherche :
"Les castors (Castor fiber, Castor canadensis) sont l'un des ingénieurs des écosystèmes les plus influents parmi les mammifères, modifiant fortement l'hydrologie, la géomorphologie, le cycle des nutriments et les écosystèmes des corridors fluviaux. En tant qu'agent de perturbation, ils y parviennent d'abord et avant tout par la construction de barrages, qui retiennent l'écoulement et augmentent l'étendue des eaux libres, et dont découlent tous les autres impacts sur le paysage et l'écosystème. Après une longue période d'éradication locale et régionale, les populations de castors se sont rétablies et se sont développées dans toute l'Europe et l'Amérique du Nord, ainsi qu'une espèce introduite en Amérique du Sud, ce qui a nécessité une révision complète de l'état actuel des connaissances sur la façon dont les castors influencent la structure et le fonctionnement des corridors fluviaux. 
Ici, nous synthétisons les impacts globaux sur l'hydrologie, la géomorphologie, la biogéochimie et les écosystèmes aquatiques et terrestres. Nos principales conclusions sont qu'un complexe de barrages de castors peut augmenter le stockage de l'eau de surface et souterraine, modifier la répartition des bilans hydriques à échelle des tronçons, permettre une atténuation des inondations spécifique au site, modifier l'hydrologie à faible débit, augmenter l'évaporation, augmenter les temps de séjour de l'eau et des nutriments, augmenter l'hétérogénéité géomorphologique, retarder le transport des sédiments, augmenter le stockage du carbone, des nutriments et des sédiments, étendre l'étendue des conditions et des interfaces anaérobies, augmenter l'exportation en aval du carbone organique dissous et de l'ammonium, diminuer l'exportation en aval du nitrate, augmenter les transitions de l'habitat lotique à l'habitat lentique et l'eau primaire aquatique production, induire une succession «inverse» dans les assemblages de végétation riveraine et augmenter la complexité de l'habitat et la biodiversité à l'échelle du tronçon.
Nous examinons ensuite les principales rétroactions et les chevauchements entre ces changements causés par les castors, où la diminution de la connectivité hydrologique longitudinale crée des étangs et des zones humides, les transitions entre les écosystèmes lentiques et lotiques, l'augmentation des gradients d'échange hydraulique vertical et le cycle biogéochimique par unité de longueur de cours d'eau, tandis que l'augmentation la connectivité latérale déterminera l'étendue de la zone d'eau libre et des habitats des zones humides et littorales, et induira des changements dans les assemblages des écosystèmes aquatiques et terrestres. Cependant, l'étendue de ces impacts dépend d'abord du contexte hydrogéomorphique du paysage, qui détermine l'étendue de l'inondation des plaines inondables, un facteur clé des changements ultérieurs de la dynamique hydrologique, géomorphique, biogéochimique et écosystémique. Ensuite, cela dépend de la durée pendant laquelle les castors peuvent supporter des perturbations sur un site donné, qui est limitée par des rétroactions descendantes (par exemple, la prédation) et ascendantes (par exemple, la concurrence), et détermine en fin de compte les voies du paysage du corridor fluvial et la succession écosystèmique après abandon du castor. Cette influence démesurée des castors sur les processus et les rétroactions des corridors fluviaux est également fondamentalement distincte de ce qui se produit en leur absence. 
Les pratiques actuelles de gestion et de restauration des rivières sont donc ouvertes à un réexamen afin de tenir compte des impacts des castors, tant positifs que négatifs, de sorte qu'ils puissent potentiellement accueillir et améliorer les services d'ingénierie écosystémique qu'ils fournissent. Nous espérons que notre synthèse et notre cadre holistique d'évaluation des impacts des castors pourront être utilisés dans cette entreprise par les scientifiques et les gestionnaires de rivières à l'avenir, car les populations de castors continuent de croître en nombre et en aire de répartition."

Les chercheurs soulignent que le castor oblige à repenser le "river continuum concept" qui est une des bases savante de la continuité écologique. Il faut selon eux envisager que la rivière connaît en réalité des discontinuités :
"Les modifications à grande échelle des castors des modèles de processus physiques sur lesquels les écosystèmes s'adaptent et fonctionnent perturbent donc ce cadre traditionnel du RCC (river continuum concept), en particulier dans les habitats de cours d'eau d'ordre inférieur, avec des conséquences importantes pour notre conceptualisation des processus des écosystèmes fluviaux. La principale raison pour laquelle les modifications du castor perturbent autant le RCC est due à l'étendue croissante des eaux de surface retenues derrière les barrages individuels et collectivement au sein des complexes de barrages de castor, qui constituent un changement brusque d'échelle de portée de presque exclusivement lotique (eau courante) à un mélange complexe de conditions lentiques (eau calme) et lotiques et de transitions entre elles. Cette variation entre les écosystèmes lotiques et lentiques a été couverte dans des modèles conceptuels qui incluent des barrages anthropiques dans des systèmes fluviaux régulés (par exemple : le concept de discontinuité en série de Ward et Stanford, 1995), mais l'échelle et le nombre de transitions lentiques-lotiques sont probablement très différents. entre les étangs de castors et les réservoirs artificiels. Ainsi, en s'appuyant sur ces concepts, ainsi que sur le concept de patch dynamique en écologie fluviale (Poole, 2002), Burchsted et al. (2010) ont présenté un cadre écologique élégant qui reconnaît les castors comme le perturbateur consommé des continuums fluviaux. Ce paradigme d'écosystème fluvial discontinu reconnaît l'inégalité des transitions lotiques-lentiques fournies par les barrages de castor sur des échelles de portée, et l'évolution temporelle d'un tel système vers des corridors fluviaux plus ouverts composés d'habitats de zones humides et de prairies plutôt que de hautes forêts riveraines (Burchsted et al. , 2010)."



Paysage de rivières à castors, extrait de Larsen et al 2021, art cit.

Sur la comparaison des barrages de castors et des barrages d'humains, les chercheurs font les observations suivantes dans l'évaluation des capacités de stockage d'eau :
"La capacité de stockage des plaines inondables peut être encore améliorée à mesure que les castors modifient leur habitat, par exemple en creusant de petits réseaux de canaux et d'étangs dans les plaines inondables (Johnston et Naiman, 1990a, Johnston et Naiman, 1990b; Stocker, 1985). Bien que la capacité de stockage en surface des barrages de castors individuels (étang et plaine inondable) soit faible par rapport aux réservoirs artificiels, les stockages en surface cumulés de plusieurs barrages dans une cascade de barrages de castors peuvent augmenter considérablement leur impact hydrologique (Fig. 6a et b) (Puttock et al., 2017 ; Nyssen et al., 2011). Les estimations publiées de la densité des barrages varient entre moins de 1 (par exemple 0,1) et > 70 barrages par km de tronçon de rivière (Gurnell, 1998 ; Pollock et al., 2003 ; Zavyalov, 2014), bien que des estimations de densité considérablement plus faibles aient été compilées par Johnston (2017). ). À des densités élevées, même de petites capacités de stockage de barrages individuels (L3) par rapport aux débits entrants (L3T−1) peuvent, dans l'ensemble, modifier considérablement les bilans hydriques, les temps de séjour de l'eau et les régimes d'écoulement. (...)
Il existe au moins quatre façons dont la comparaison entre les barrages de castor et les réservoirs ou déversoirs artificiels divergent, avec des implications importantes pour l'interprétation de la dynamique de stockage. Premièrement, la structure du barrage elle-même est perméable (Burchsted et al., 2010) et apportera une contribution largement inconnue aux débits sortants (discuté dans la section ci-dessous). Deuxièmement, la hauteur relativement faible du barrage par rapport à la largeur de la vallée entraîne des rapports surface/volume très élevés qui peuvent accroître les pertes par infiltration et évaporation. Troisièmement, les barrages de castor sont généralement construits dans des vallées alluviales de débit modéré à faible (Pollock et al., 2003 ; Suzuki et McComb, 1998), des conditions favorables à une connectivité hydraulique plus élevée entre les aquifères alluviaux superficiels et peu profonds. Cela signifie que les changements de volume de stockage souterrain ont le potentiel d'être comparables, voire supérieurs, aux changements de volume de stockage de surface, un point abordé plus en détail dans la section 2.5 sur la connectivité entre la surface et les eaux souterraines. Enfin, l'emplacement physique des barrages de castors peut être très dynamique dans l'espace et dans le temps, ajoutant une complexité importante à la façon dont les changements de stockage évoluent dans les tronçons de rivière, en particulier ceux avec plusieurs barrages sur de courtes distances. Tous ces processus peuvent modifier la dynamique du stockage de l'eau dans les bassins versants et avoir des implications importantes sur la façon dont le cycle hydrologique est équilibré sur une gamme d'échelles de temps."

Discussion
Contrairement à ce que laissent entendre certains critiques, les chercheurs comparent couramment les barrages de castors et les barrages des humains. La raison en est simple : ces artifices partagent des propriétés, comme la création d'un obstacle à l'écoulement en long, d'une différence de hauteur entre l'amont et l'aval, d'un plan d'eau n'ayant plus les mêmes propriétés physiques, chimiques, biologiques que l'eau courante. Si différents barrages ont différentes propriétés – c'est aussi vrai pour la diversité des barrages humains allant du seuil de 30 cm de hauteur au grand barrage de 300 m de hauteur –, il n'en reste pas moins que ce sont d'abord des barrages, avec des implications physiques similaires en premier ordre. 

Parmi ces implications, l'une d'elles nous intéresse particulièrement : la capacité à retenir et divertir l'eau, au lieu que la rivière soit vue comme un canal d'évacuation rapide des eaux vers l'aval. On ne sera pas surpris de constater que le bilan des barrages et retenues de castor est favorable à la préservation de l'eau dans les bassins versants. Mais davantage que certains chercheurs laissent entendre que des barrages et retenues humains ne pourraient pas avoir le même effet.

Le "libre écoulement" de la rivière est un motif ancien des politiques publiques de l'eau (notamment en raison du blâme qui a longtemps frappé les eaux stagnantes et leurs problèmes sanitaires), mais ce n'est pas spécialement le régime naturel de cette rivière, au moins là où on laisserait libre cours aux forêts et aux castors. L'idée d'un petit cours d'eau à écoulement rapide, rives dégagées et méandres paisibles est en fait une esthétique fluviale tardive (18e-19e siècles), à l'époque où les bassins versants sont déjà très modifiés (voir Lespez et al 2015, Brown et al 2018) : à cette époque, les forêts comme les castors ont largement disparu ; l'agriculture a colonisé la plupart des bassins de plaine avec élévations de berges et digues, chenalisations et incisions de lits ; les retenues (et canaux) des moulins, forges, étangs et autres ouvrages hydrauliques ont remplacé de manière plus permanente les artifices des castors. Un bassin versant réellement "naturel" au sens de non modifié dans ses écoulements par intervention humaine ressemblerait plutôt dans nos régions à un chaos de barrages d'embâcles et de castors, avec des débordements récurrents, des marécages en forêt humide, des lits instables d'une année l'autre, des plans d'eau aussi nombreux que les zones rapides. Rien à voir avec la "nature" de carte postale qui est le plus souvent promue par les politiques de "renaturation". Ni avec la rivière souhaitée par certains lobbies (comme les pêcheurs de salmonidés) qui naturalisent ce qui correspond à leurs usages particuliers et à un style tardif des rivières.

20/04/2023

Pas d'impact sédimentaire notable d'un seuil en rivière (Rollet el al 2022)

Des chercheurs ont étudié le seuil le plus important du fleuve côtier Gapeau, dans le sud de la France. A l'occasion de trois crues, ils montrent que la retenue de 700 m créée par cette chaussée ancienne ne sédimente pas la charge grossière et évacue les charges plus fines de sables et graviers. Les scientifiques concluent que se focaliser sur les seuils dans ce contexte ne sera pas de nature à recharger en sédiment les côtes et les plages à l'aval, car le déficit sédimentaire a d'autres causes. Leur travail rappelle aussi que la plupart des recherches menées sur la sédimentation dans les ouvrages modestes (seuils, chaussées, petits barrages et déversoirs) ne montrent pas d'effet notable. Soit le contraire de ce qui est affirmé dans le discours du gestionnaire public.



Le seuil de Sainte-Eulalie, étudié par les chercheurs. DR.

Anne-Julia Rollet, Simon Dufour, Romain Capanni et Mireille Lippmann Provansal ont analysé l'impact sédimentaire d'un seuil sur une petite rivière du Sud de la France. Le Gapeau est un fleuve côtier de 47,5 km de long (pente : 0,7 m.m-1) qui draine un bassin versant de 564 km² entre les crêtes montagneuses de la Sainte Baume et de Morières au nord et à l'ouest et la crête montagneuse des Maures à l'est. La rivière s'ouvre au sud sur la plaine et se jette dans la rade d'Hyères. Le bassin versant du Gapeau contient deux sous-bassins aux caractéristiques géologiques contrastées : le sous-bassin versant ouest, où la rivière Gapeau coule sur un substrat calcaire, perméable et favorable à l'infiltration, et  le sous-bassin versant est de la rivière Réal-Martin (principal affluent de la rivière Gapeau), qui coule sur des substrats métamorphiques imperméables. La rivière Gapeau présente un chenal étroit et profond sur la majeure partie de sa longueur ainsi que des berges élevées. Cette morphologie est particulièrement adaptée au transit des flux d'eau et de sédiments. 

Dans la partie aval du Gapeau, le seul ouvrage pouvant piéger les sédiments en transit est le seuil de Sainte Eulalie. Cette chaussée est un ouvrage en maçonnerie de 3,75 m de haut et génère en amont un plan d'eau d'environ 700 mètres de long en régime d'étiage. Sa date exacte de construction est inconnue, mais elle est indiquée sur des cartes de 1896. 

Pour déterminer l'influence du seuil sur la continuité sédimentaire de la rivière, les chercheurs ont suivi l'évolution du stock sédimentaire en amont du seuil de Sainte Eulalie, qui est la principale zone de piégeage. La capacité de piégeage des sédiments du déversoir a été évaluée en analysant les différentiels bathymétriques avant vs après les crues, avec quatre mesures par point pour assurer une marge d'erreur verticale de ± 0,10 m après post-traitement. Trois relevés bathymétriques ont été réalisés pour décrire la mobilité sédimentaire générée lors de crues de trois intensités différentes : débit d'eau instantané de 42 m3.s-1, 57 m3.s-1 et 67 m3.s-1.

Voici le résumé de leur travail :
"Dans les systèmes littoraux et fluviaux en déficit sédimentaire la restauration du transport solide fait aujourd’hui l’objet d’une attention particulière. La suppression d’ouvrages transversaux (seuils, barrages) est parfois préconisée même si l’effet réel   des petits seuils sur le transport de la charge de fond n’est pas démontré dans tous types de contexte. Dans ce cadre, notre étude a pour objectif d’apporter des éléments quantifiés pour (i) documenter l’interruption des transferts sédimentaires grossiers (> sables fins) par un petit seuil sur un système fluvial côtier méditerranéen (le Gapeau), et (ii) discuter la pertinence de sa suppression pour la restauration de la continuité sédimentaire. Ces éléments sont produits partir d’approches croisées de suivis de la dynamique sédimentaire du fond du lit (bathymétrie, traçages sédimentaires, chaines d’érosion et suivis topographiques) et de modélisation de capacités de transport. Nos résultats nous permettent de conclure que le seuil étudié ne semble pas constituer d’entrave physique au transfert de la charge de fond dans la mesure où aucune accrétion nette n’a été observée en amont de l’ouvrage malgré des crues importantes enregistrées durant le suivi. Néanmoins, la mesure indirecte du transport solide montre qu’il n’existe pas ou plus de charriage sur ce cours d’eau qui connait un fort déficit sédimentaire. Ainsi, la suppression de seuil sur le Gapeau serait insuffisante pour atténuer le déficit sédimentaire fluvial et/ou littoral. Il conviendrait plutôt de concentrer la réflexion sur la réalité des entrées sédimentaires et l’efficacité des connexions entre les versants et le chenal."
Les auteurs précisent encore :
"La mesure indirecte du transport sédimentaire a montré que la charge de fond n'est pas (ou plus) transportée le long de la rivière Gapeau (à l'exception d'un peu de transport résiduel de sable et de gravier que nous n'avons pas réussi à quantifier). Le transport sédimentaire mesuré, même lors d'une crue de 5 ans, avait un volume extrêmement faible (456 m3) et était très inférieur à la capacité de transport (20 200 m3). Cette différence indique que la rivière Gapeau présente un important déficit sédimentaire. Nous avons également observé un pavage important du lit de la rivière qui variait de 2,1 à 10,5 en aval de la zone d'étude. Le lit de la rivière Gapeau est ainsi quasi stable lors des crues les plus courantes, et il ne reste qu'une faible coulée sédimentaire composée de sable et de gravier. Ce débit est trop faible pour être détecté par des mesures indirectes de transport sédimentaire, mais nous l'avons détecté lors du suivi de la retenue de Sainte Eulalie.

Des mesures bathymétriques supplémentaires effectuées à l'embouchure de la rivière Gapeau avant et après la crue de décembre 2008 ont indiqué que 1 300 à 1 400 m3 de sédiments (sable moyen à grossier) ont été apportés aux plages (Brunel, 2010; Capanni, 2011). Cependant, ces apports en conditions hydrologiques actives (Q5) ne compensent pas les 2 700 m3.an-1 estimés d'érosion côtière (Capanni, 2011). Ainsi, les apports fluviaux de la rivière Gapeau semblent peu contribuer au trait de côte. Les volumes actuels de sédiments grossiers fluviaux ne sont pas suffisants pour maintenir la rivière en bon état, et le système fluvial du Gapeau présente un déficit sédimentaire sévère malgré la présence du seuil de Sainte Eulalie. Ces éléments soulèvent ainsi des questions sur l'utilité de retirer le seuil pour rétablir la continuité sédimentaire et entretenir le trait de côte. Le déversoir n'entrave pas l'écoulement du sable, dont le volume est beaucoup trop faible pour contrebalancer les déficits côtiers en sable. Sur la base de nos observations du seuil de Sainte Eulalie, nous émettons l'hypothèse que la plupart des autres ouvrages du bassin versant ne gênent pas le transfert sédimentaire soit parce qu'ils sont déjà engorgés soit parce qu'ils n'ont jamais complètement interrompu le transfert sédimentaire. Le seuil de Sainte Eulalie, comme tous les seuils de la rivière Gapeau, était déjà présent dans le « profil des grands efforts hydrauliques » en 1954 (et probablement bien avant). Avant les années 1970, cependant, les données topographiques indiquent qu'aucune incision ou rétraction n'a eu lieu (Capanni, 2011). Les autres ouvrages sont situés en amont dans la zone du bassin versant, dans des contextes aux pentes souvent plus fortes que ceux de Sainte Eulalie, qui est aussi l'ouvrage le plus haut (3,5 m, contre 2,0 m pour les autres). Ainsi, si le seuil de Sainte Eulalie ne stocke pas de charriage, les autres seuils ne le sont probablement pas non plus. Ces observations sont cohérentes avec les résultats de la plupart des études sur l'influence des petites structures sur le transport du charriage dans des contextes géomorphologiquement dynamiques."

Discussion
Le faible effet sédimentaire des petits ouvrages hydrauliques est un trait récurrent des recherches menées sur ce sujet. Dans leur travail, les chercheurs le rappellent : "De nombreuses études ont mis en évidence l'influence des petites structures sur la morphologie des chenaux (Fencl et al., 2015), mais seules quelques études morphologiques se sont concentrées sur l'influence des déversoirs sur la continuité des sédiments grossiers. Les modifications morphologiques qu'entraînent les seuils couvrent souvent une superficie relativement réduite et sont liées soit à un engorgement de l'ouvrage en amont (ex. : sédimentation), soit à une poussée hydraulique en aval (ex. : incision en aval de l'ouvrage, apparition de berges médianes). A ce jour, aucun changement morphologique en aval des seuils n'a été explicitement corrélé au déficit sédimentaire qu'ils ont généré. Les quelques études portant sur l'influence des déversoirs sur la continuité sédimentaire suggèrent qu'ils ne l'influencent pas fortement (Csiki et Rhoad, 2010 ; Pearson et Pizzuto, 2015 ; Peeters et al., 2020 ; Casserly et al., 2021). Les sédiments de charriage peuvent quitter un réservoir lors d'épisodes de débit élevé (Pearson et al., 2011; Casserly et al., 2021) ou après avoir dépassé la capacité de stockage du réservoir (Major et al., 2012). Pearson et Pizzuto (2015) ont suggéré que toutes les fractions granulométriques dans le matériau du lit fourni en amont auraient pu être transportées à travers le réservoir qu'ils ont étudié, le long de la rampe en pente et au-dessus du barrage de 2,5 m, tandis que Peeters et al. (2020) ont observé un transfert sélectif de particules autour de la médiane. Cependant, la réponse des rivières à l'existence à long terme de déversoirs varie considérablement (Csiki et Rhoad, 2010) et dépend principalement des caractéristiques des ouvrages (c'est-à-dire la forme, la hauteur de la crête, la présence ou l'absence de systèmes de vannage), la rivière (c.-à-d. occurrence de grandes crues, taille des sédiments, capacité de l'hydraulique fluviale à transporter les sédiments au-dessus de la crête du déversoir) et les caractéristiques générales du bassin versant (p. ex. densité du déversoir en amont, apport de sédiments disponible) (Pearson et Pizzuto, 2015) . Par conséquent, comprendre l'influence des déversoirs sur les flux de sédiments (et donc la pertinence de les enlever) nécessite une approche de recherche et de gestion différente et plus intégrée que l'approche individualiste qui a été appliquée aux grands barrages (Fencl et al., 2015)."

A rebours du discours public tenu depuis 15 ans pour justifier la destruction des petits ouvrages, ceux-ci ne représentent donc pas a priori un problème grave de transfert sédimentaire. Le même discours public avait déjà menti sur la soi-disant "auto-épuration" des rivières, que les barrages entraveraient alors que l'inverse est vrai (toutes choses égales par ailleurs, une retenue tend à éliminer divers intrants et polluants). La rhétorique est désormais connue : on ne met en avant que des aspects négatifs des ouvrages hydrauliques, quitte à les exagérer voire les inventer dans certains cas, alors que l'on passe sous silence leurs aspects positifs. Cette politique publique partisane et nuisible aux patrimoines des rivières doit cesser.

Référence : Anne-Julia Rollet et al (2022), Is removing weirs always effective at countering the sediment deficit? Case study in a Mediterranean context: the Gapeau River, Géomorphologie : relief, processus, environnement, 28,3, 187-200

08/10/2022

Profiler et reprofiler le delta du Rhin, entre guerre et inondation (Mosselman 2022)

Saviez-vous que le profil actuel du delta du Rhin a été influencé par l’arrivée des troupes de Louis XIV en 1674 et l’humiliation hollandaise de n’avoir pu les stopper ? A travers quelques exemples, un chercheur néerlandais rappelle dans une publication récente que les aménagements fluviaux suivent les aléas de l’histoire humaine, avec des fenêtres d’opportunité qui permettent de réaliser des projets.  En dernier ressort et même quand ils prennent la forme de «renaturation», ces choix sont évalués à leurs résultats tels que les apprécient les sociétés.


Le passage du Rhin, peinture d'Adam Frans Van der Meulen

Le delta du Rhin aux Pays-Bas, parfois appelé delta Rhin-Meuse-Escaut, est une zone modifiée par les interventions humaines depuis l’époque romaine. Erik Mosselman (Université Delft de Technologie) publie un article intéressant sur les entrelacements des choix hydrauliques et des événements historiques à l’Anthropocène. 

Au 17e siècle, les jeunes Pays-Bas ont émergé comme association de provinces unies après le traité de Westphalie (1648). Mais la province de Gueldre et la province de Hollande ont un différend. Près du delta, le bras du Rhin se sépare, avec le Waal méridional vers l’Ouest qui prend la plus grande part, le Rhin septentrional qui tend à avoir moins d’eau. L’excès d’eau dans le Waal brisait les digues et créait les inondations. Les habitants de Gueldre proposèrent de réduire son débit par une dérivation, mais la Hollande refusa, craignant de perdre la navigabilité de cette voie essentielle pour desservir Rotterdam,  Dordrecht et l’arrière-pays rhénan. 

Las, tout le monde fut mis d’accord… par les armées françaises de Louis XIV lorsqu’elles envahirent le pays en 1674. Les troupes traversèrent sans peine les branches du Rhin à niveau bas. L’événement créa un choc dans les esprits (même si les Provinces-Unies ouvrirent finalement grandes leurs digues et noyèrent le plat pays pour repousser les Français). La Hollande et la Gueldre se mirent d’accord pour réaménager la zone et construire le canal de Pannerden (1701-1709) qui servait à la fois à la répartition des eaux, en ligne de défense et en raccourcissement des transports dans le Rhin inférieure. Un peu plus tard, la gestion de cette région deltaïque qui restait très instable donna naissance au Rijkswaterstaat (1798), organe public de gestion de l’eau et des infrastructures. «Sans cette guerre, le système fluvial des Pays-Bas aurait pu se développer d’une manière complètement différente», souligne Erik Mosselman.

Au 20e siècle, le chercheur prend un autre exemple, dont l’événement fondateur n’est pas une guerre mais une catastrophe naturelle : les grandes inondations de 1953. L’ampleur des dégâts provoque la naissance d’un Comité Delta qui décide de protéger les populations et de réduire le coût économique des aléas par un système d’endiguement des branches du delta du Rhin et de barrage évitant les remontées d’eaux salines. Mais dans les années 1970, la mémoire de la catastrophe s’est estompée et les habitants manifestent de plus en plus d’hostilité à l’endiguement, notamment du fait de démolition de patrimoine historique. Dans les années 1980, un groupe d’écologue propose une option novatrice à l’époque, consistant à élargir les lits plutôt qu’à les endiguer. Malgré un prix d’architecture du paysage, le projet n’est pas retenu. 

C'est alors que survient la grande crue de 1995 (le Rhin atteint 12000 m3/s) qui occasionne le déplacement de 250 000 personnes et de nombreux dégâts dans les zones où l’endiguement avait été stoppé. Un programme appelé « Espace pour la rivière » est lancé, avec un budget de 2,3 milliards, reprenant les idées du projet de 1980 : «les plaines inondables ont été abaissées, les obstacles ont été enlevés, les épis ont été arasés ou remplacés par des murs d’entraînement longitudinaux, des canaux latéraux et des canaux de dérivation ont été creusés et des digues ont été reculées. Ces interventions visaient non seulement à réduire les niveaux d’eau de crue, mais aussi à améliorer la ‘qualité spatiale’, un amalgame de nature, de paysage et de patrimoine culturel». 

Erik Mosselman souligne que les normes de résistance aux crues ont encore changé dans les années 2010 et que la politique publique se ré-oriente vers la consolidation de digues, les options impliquant la «renaturation» répondant moins bien aux nouvelles exigences des évaluations. Il y a donc eu une fenêtre étroite pour modifier le profil du delta du Rhin dans le sens d’un espace de liberté en lit majeur.

Discussion
Si la nature fixe ses conditions d’entrée géologiques et hydrologiques, les rivières sont tout autant les filles de l’histoire et des actions humaines. S’en aviser permet de prendre quelque recul par rapport aux «modes» qui se succèdent dans l’inspiration des politiques publiques. En dernier ressort, ce sont les heurs et malheurs des sociétés humaines qui vont guider l’urgence d’agir, et c’est l’obtention de résultats espérés qui sera l’arbitre de l’intérêt de l’action. 

Ce siècle nous promet de nombreux aléas hydrologiques, en particulier les sécheresses et les crues dont l’intensité devrait augmenter avec le changement climatique. Qu’ils prennent l’argument de la renaturation ou de la maîtrise, les aménagements hydrologiques et hydrauliques seront d’abord jugés à leurs effets, et notamment leurs effets socio-économiques en lien aux aléas. Les aménageurs public doivent s’en souvenir, car la perte de mémoire historique de l'eau, le défaut de culture hydraulique et le manque de vision sur les objectifs de l’action peuvent perdre un temps et un argent précieux dans la course à l’adaptation climatique.

27/07/2022

Les barrages de castors bénéfiques pour la quantité et la qualité d'eau en tête de bassin versant (Dittbrenner et al 2022)

Les castors et les humains sont les deux seules espèces capables de construire des retenues et diversions d'eau sur le lit mineur des rivières. Une nouvelle étude nord-américaine confirme, après de nombreuses autres, que la formation des retenues par barrages de castor tend à augmenter le stockage local de l'eau dans les sols et nappes, ainsi dans le cas étudié qu'à baisser la température de l'eau. Les chercheurs jugent ce bilan très bénéfique, notamment en situation de changement climatique qui réduit le débit des petites rivières de tête de bassin.  Ces travaux contredisent évidemment le dogme du libre écoulement des eaux selon lequel tout obstacle en rivière est un drame écologique, et toute retenue une somme d'effets uniquement négatifs. L'état normal d'une rivière est plutôt d'être parsemée de tels obstacles, qu'ils proviennent de castors, d'humains, d'embâcles, d'éboulis ou autres causes ni plus ni moins naturelles les unes que les autres.


La rivière avant et après la création de barrages et retenues par les castors, extrait de Dittbrenner  et al 2022, art cit.

Longtemps présent en abondance dans les ruisseaux et rivières de l'hémisphère Nord, les castors américains (Castor canadensis) et eurasiens (Castor fiber) ont connu une régression forte de l'Antiquité au 20e siècle, au point de frôler l'extinction. Désormais protégées, ces espèces ont entamé une reconquête progressive des vallées où elles vivaient, du moins celles qui présentent encore des biotopes favorables à leur cycle de vie. C'est le cas en particulier des têtes de bassin qui sont restées boisées.

Les castors se caractérisent par la construction de barrages, digues, canaux, huttes qui forment leur territoire. C'est la seule espèce avec la nôtre qui crée des plans d'eau par barrages. Les écologues et hydrologues s'intéressent aux castors pour comprendre l'impact des retenues d'eau qu'ils bâtissent.  Benjamin J. Dittbrenner et ses collègues ont analysé des bassins versants aux Etats-Unis en phase de reconquête par une colonie de castors. 

Voici le résumé de leur travail

"De nombreuses régions connaissent une augmentation des températures des cours d'eau en raison du changement climatique, et certaines connaissent une réduction des débits des cours d'eau en été et de la disponibilité de l'eau. Étant donné que la construction de barrages et la formation de retenues par le castor peuvent augmenter le stockage de l'eau, le refroidissement des cours d'eau et la résilience de l'écosystème riverain, le castor a été proposé comme un outil potentiel d'adaptation au climat. Malgré le grand nombre d'études qui ont évalué comment l'activité des castors peut affecter l'hydrologie et la température de l'eau, peu d'études expérimentales ont quantifié ces résultats après la relocalisation des castors. 

Nous avons évalué les changements de température et de stockage de l'eau suite à la relocalisation de 69 castors dans 13 cours d'eau d'amont du bassin versant de la rivière Skykomish dans le bassin de la rivière Snohomish, Washington, États-Unis. Nous avons évalué comment les barrages de castors affectaient le stockage des eaux de surface et souterraines et la température des cours d'eau. Les relocalisations réussies ont créé 243 m3 de stockage d'eau de surface par 100 m de cours d'eau au cours de la première année suivant la relocalisation. Les barrages ont augmenté l'élévation de la nappe phréatique jusqu'à 0,33 m et stocké environ 2,4 fois plus d'eau souterraine que d'eau de surface par tronçon de relocalisation. Les tronçons de cours d'eau en aval des barrages ont affiché une diminution moyenne de 2,3 °C pendant les conditions de débit de base en été. Nous avons également évalué comment les dommages, l'état, la fréquence d'entretien et la morphologie des étangs influençaient la température des cours d'eau dans les complexes de milieux humides naturellement colonisés. 

Nos résultats démontrent que la construction de barrages peut augmenter le stockage de l'eau et réduire les températures des cours d'eau au cours de la première année suivant la relocalisation réussie des castors. La morphologie fluviale et des plaines inondables des tronçons candidats à la relocalisation est une considération importante car elle détermine le type et l'ampleur de la réponse. La relocalisation vers des tronçons avec de petites retenues abandonnées existantes peut répondre aux critères thermiques en convertissant des tronçons de réchauffement en tronçons de refroidissement, tandis que la relocalisation dans de grands complexes abandonnés ou un habitat vacant peut entraîner un plus grand stockage de l'eau. Bien que la relocalisation des castors puisse être une stratégie d'adaptation climatique efficace pour conserver des régimes hydrologiques et une qualité de l'eau plus stables dans notre zone d'étude, il semble y avoir des facteurs environnementaux et géomorphologiques spécifiques à la région qui influencent la façon dont les castors affectent stockage et température de l'eau. Des recherches supplémentaires sont nécessaires pour déterminer comment et pourquoi ces différences régionales affectent le stockage de l'eau et la réponse de la température des cours d'eau dans les systèmes influencés par le castor."

Les auteurs rappellent que leurs analyses confirment de nombreux travaux antérieurs : "Il a été démontré que les complexes de castor augmentent considérablement le potentiel de stockage des eaux de surface et souterraines. On estime que, dans le monde entier, les complexes de castors stockent jusqu'à 11 km3 d'eau de surface (Karran et al., 2016) avec jusqu'à 30 % de l'eau de surface d'un cours d'eau stockée dans des retenues de castors (Duncan, 1984). Des études ont montré que le castor augmentait la largeur des zones riveraines le long des cours d'eau de 11 à 34 m (McKinstry et al., 2001), et dans les tronçons en aval des barrages, le volume des bassins augmentait également (Stack & Beschta, 1989). On a constaté que les tronçons de cours d'eau endigués étendaient l'étendue latérale de la zone hyporhéique jusqu'à 8 m au-delà des tronçons de contrôle à partir d'une largeur de 0,2 m avant la construction du barrage (Shaw, 2009), tandis que les retenues plus grandes étendaient l'étendue des eaux souterraines de plus de 50 m ( 10 m dans les tronçons témoins ; Lowry, 1993). Cependant, en raison de la complexité et de la grande variabilité de la géologie locale, du relief, du type de sol et d'autres caractéristiques morphologiques, les estimations du stockage total sont difficiles à quantifier. Bien que la plupart des études existantes aient documenté le stockage dans des complexes de castor bien établis, les effets du déplacement du castor sur le stockage des eaux de surface et souterraines restent sous-étudiés."

Concernant la température, les auteurs soulignent la dépendance au contexte local et la nécessité de bien fixer l'échelle de l'analyse thermique, en tenant compte notamment des remontées de nappes : "Les effets des barrages de castors sur la température des cours d'eau sont également très variables d'une étude à l'autre selon l'emplacement et la méthodologie d'étude. Des recherches antérieures ont trouvé des preuves de réchauffement (Avery, 2002; Patterson, 1951), de refroidissement (White, 1990), de réchauffement ou de refroidissement selon la saison (Avery, 1983), ou d'absence de relation entre la présence d'un barrage et la température (McRae & Edwards, 1994 ). Dans les systèmes d'amont à plus haute altitude, où les cours d'eau sont relativement froids, des augmentations de température de 6 à 9 °C ont été observées en aval des étangs de castors (Margolis et al., 2001). Des études plus récentes ont évalué les températures des cours d'eau à plus grande échelle et ont constaté que les étangs de castors peuvent également avoir un effet de refroidissement net (Weber et al., 2017; White et Rahel, 2008) en raison de la recharge et de la remontée d'eau souterraine (Pollock et al., 2007)"

Discussion
Le castor nord-américain bâtit des barrages de plus grande dimension que le castor européen, mais les deux espèces utilisent cette même stratégie de construction de niche pour remodeler les rivières. 

Le point évidemment étonnant de ces études sur le castor, c'est qu'elles contredisent totalement le discours dogmatique sur la nécessité d'un libre écoulement parfait des eaux de surface au nom de la continuité écologique des rivières. Dans la réalité, les rivières même sans humains sont cesse fragmentées, par des barrages d'embâcles, d'éboulis ou de castors. Leur lit est loin d'être le petit chenal lotique encaissé et sinueux que l'on montre souvent comme exemple de rivières "naturelles" alors que c'est un style fluvial tardif issu de l'exploitation humaine des bassins versants (voir Lespez et al 2015).

Si le petit barrage de castor diffère évidemment du petit barrage humain par sa conception, il est notable que de nombreuses propriétés et fonctionnalités hydrologiques sont semblables : hausse de la lame d'eau, élargissement du lit en eau sur l'emprise de la retenue, débordement locaux an amont si le foncier est prévu pour l'accueillir (ou diversion dans des canaux latéraux, sachant que le castor lui aussi est capable de creuser ces annexes hydrauliques). Au demeurant, d'autre travaux de recherche ont montré que la destruction des ouvrages humains mène à des incisions de lit, moindres débordements et moindres recharges de nappes (Maaß et Schüttrumpf 2019, Podgórski et Szatten 2020). Les mêmes causes produisent les mêmes effets.

L'image ci-dessous montre une succession de petits plans d'eau humains en tête de bassin, sur une carte ancienne (Cassini, 18e siècle). Nos ancêtres, comme les castors, avaient une certaine intuition des moyens de retenir et gérer l'eau dans les bassins versants...

Référence : Dittbrenner BJ et al (2022), Relocated beaver can increase water storage and decrease stream temperature in headwater streams, Ecosphere, 13, 7, e4168


Succession de plans d'eau humains dans un aménagement d'Ancien Régime en tête de bassin.

18/03/2022

Détruire des ouvrages de moulin sans comprendre la dynamique de la rivière peut mener à des erreurs (Maaß et al 2021)

Dans un passage en revue de la littérature scientifique sur la morphologie des bassins versants européens et sur leurs tentatives de restauration écologique, trois chercheurs soulignent que les actions aujourd'hui entreprises manquent souvent d'informations solides sur le passé et la dynamique des rivières et des lits majeurs. En fait, les bassins versants sont modifiés depuis des millénaires, la notion d'état "naturel" est mal documentée, et certaines interventions peuvent avoir des effets contraires à la conséquence espérée. Les chercheurs citent longuement le cas particulier des destructions d'ouvrages de moulin et de petite hydraulique, en montrant que de telles opérations amènent aussi souvent une incision du lit de la rivière, ce qui contrarie la connexion avec le lit majeur, la rétention d'eau ou l'idée d'une recharge plus active des sédiments. Espérons que cette prudence scientifique prenne le pas sur le dogme administratif et militant de la suppression aveugle du maximum d'ouvrages. 



Histoire et diversité des impacts d'activité humaine sur les systèmes fluviaux, extrait de Maaß et al 2021, art cit

Les actions humaines sur les bassins versant ont commencé à partir du néolithique. Elles sont nombreuses : changement d'utilisation des terres, incluant l'agriculture, la déforestation, le reboisement et l'urbanisation, qui affectent le ruissellement et la charge en sédiments, mais aussi régulation des rivières, barrages, réservoirs, prélèvement d'eau, extraction de granulats, canalisation, dragage, remblai ou enrochement, qui modifient directement le chenal et sa connectivité avec les plaines inondables du lit majeur. Si ces activités durent depuis des millénaires, elles ont connu une accélération à l'ère moderne et en particulier au 20e siècle, en raison de la hausse démographique et des moyens technologiques de mener des travaux lourds. 

La restauration écologique de rivière et de bassin versant vise à corriger des dysfonctionnements physiques (ou des pertes de biodiversité) liés à certains aménagements. Mais elle est confronté à l'ubiquité des transformations anciennes et à la difficulté de définir ce que serait encore un état "naturel" du chenal ou de son bassin, ainsi qu'à la prédiction exacte de ses effets. 

Anna-Lisa Maaß, Holger Schüttrumpf et Frank Lehmkuhl passent en revue ces sujets. Voici le résumé de cette analyse :

Le climat, la géologie, la géomorphologie, le sol, la végétation, la géomorphologie, l'hydrologie et l'impact humain affectent les systèmes rivière-lit majeur, en particulier leur charge sédimentaire et la morphologie du chenal. Depuis le début du Holocène, l'activité humaine est présente à différentes échelles, du bassin versant au chenal, et a une influence croissante sur les systèmes fluviaux. Aujourd'hui, de nombreux systèmes rivière-lit mejeur sont transformés à l'occasion de restaurations vers des conditions hydrodynamiques et morphodynamiques "naturelles" sans impacts humains. Il manque des informations sur la situation historique ou "naturelle" ainsi que pour la situation actuelle. Les changements des flux sédimentaires "naturels" au cours des derniers siècles entraînent des changements de la morphologie fluviale. Le succès des restaurations de rivière dépend d'une connaissance approfondie de la morphodynamique fluviale historique et actuelle. Par conséquent, il est nécessaire d'analyser les conséquences des impacts historiques sur la morphodynamique fluviale ainsi que les implications futures des impacts humains actuels au cours des restaurations. L'objectif de cette revue est de résumer les impacts des bassins versants et des chenaux depuis le début du Holocène en Europe sur la morphodynamique fluviale, d'étudier de manière critique leurs conséquences sur l'environnement et d'évaluer la possibilité de revenir à un état de rivière morphologiquement "naturelle"

Plus particulièrement, les auteurs soulignent que les opérations de restauration sont elles aussi des chantiers et qu'elles doivent elles aussi répondre des impacts qu'elles vont créer. Un passage très intéressant pour nos lecteurs concerne les ouvrages transversaux et particulièrement les moulins, nous le traduisons ici.

"Les restaurations de rivières d'aujourd'hui sont toujours des impacts humains !

Depuis les 50 dernières années, des restaurations fluviales sont réalisées pour transformer les systèmes rivière-plaine inondable dans un état hydrologique et morphologique plus «naturel», mais ces projets de restauration sont à nouveau un impact anthropique.

La gestion des rivières, qui tient compte d'intérêts souvent conflictuels, nécessite une prise de conscience et une compréhension des processus morphodynamiques «naturels» tels que la migration latérale (Vandenberghe et al 2012). Par conséquent, la compréhension des conditions hydrodynamiques et morphodynamiques historiques des rivières, la surveillance des processus actuels et l'évaluation du développement futur sont essentielles pour la bonne gestion des rivières d'aujourd'hui.

Au XXIe siècle, les lois et directives nationales (par exemple, la loi allemande sur les ressources en eau) et internationales (par exemple, la directive-cadre sur l'eau de l'UE) mettent l'accent sur un développement hydrologique et morphologique naturel. Les caractéristiques «naturelles» d'un système rivière-plaine inondable sont résumées et formulées dans un principe directeur prédéfini, qui tient également compte des impacts anthropiques irréversibles (Patt 2016). Les objectifs de développement prédéfinis doivent être réalisés dans le cadre des restaurations de rivières et sont évalués en comparant l'état actuel d'une rivière et son principe directeur. Lors des restaurations fluviales, des zones inondables sont générées, les longueurs d'écoulement sont augmentées, les barrières anthropiques sont réduites et un développement fluvial «naturel» est initié (Gerken et al 1988).

La motivation derrière les projets de restauration des rivières varie selon la propriété foncière, l'agence de financement et le cadre culturel (James et Marcus 2006), et on rencontre souvent le problème de présenter au public ce que serait un système rivière-plaine inondable «bon et sain» (Wohl et al 2015). Pour le public, une rivière est saine si l'eau est claire et si les berges ne s'érodent pas rapidement (Wohl 2005).

Aujourd'hui, de nombreuses restaurations de cours d'eau s'accompagnent de la suppression d'ouvrages transversaux pour assurer une meilleure franchissabilité aux poissons et/ou un transport continu des sédiments. Mais la synergie de la construction et de l'enlèvement de ces structures transversales se traduira toujours par l'incision du lit de la rivière, par exemple, Buchty-Lemke et Lehmkuhl (2018) ont analysé les impacts de l'abandon des moulins à eau historiques (comme exemple de structures transversales) de la rivière Wurm en Allemagne occidentale. Ils ont conclu que l'abandon du moulin et l'enlèvement du déversoir ont déclenché un processus d'ajustement morphologique qui a créé des terrasses en amont du moulin et équilibré le point de rupture induit par le moulin dans le profil longitudinal. Cependant, un tel processus d'ajustement peut être superposé à des influences anthropiques qui contrôlent la disponibilité des sédiments et les conditions de débit ; les changements de forme de canal et de plan sont différents dans les tronçons rectilignes, sinueux et fixes. Les activités humaines du chenal de la rivière et la manière dont l'abandon du moulin a été effectué contrôlent en outre la morphodynamique fluviale. De plus, les effets de l'instabilité du chenal et des variations de la largeur des rivières sont analysés, par exemple, par Downward et Skinner 2005, Chang 2008 ou Bishop et al. 2011.

En ce qui concerne la restauration des cours d'eau, il est important et indispensable de considérer que l'abandon des moulins (ou en général la suppression des ouvrages transversaux) conduit à l'incision en amont. Si le but d'un tel retrait est de conduire à une plus grande connectivité entre le chenal et ses plaines inondables ou d'entraîner un comportement morphodynamique transversal plus élevé de la rivière, le retrait pourrait manquer son objectif.

En général, l'incision des rivières n'est pas prévue par les gestionnaires des rivières en raison de ses effets négatifs sur l'écologie des plaines inondables, mais après la suppression d'une structure transversale, une rivière vise à rétablir son profil longitudinal avant la construction de l'usine. Par conséquent, le "simple" enlèvement n'est peut-être pas toujours la solution pour une meilleure franchissabilité pour les poissons et/ou un transport continu des sédiments. (...)

Dans la littérature, seuls quelques résultats controversés de l'impact des moulins à eau (toujours à titre d'exemple pour les ouvrages transversaux) sur la morphodynamique fluviale peuvent être trouvés (voir par exemple Walter et Merritts 2008). Par exemple, Donovan et al. 2016 ont concentré leurs recherches sur la région médio-atlantique et ont déclaré que les rives du chenal à proximité des barrages de moulin rompus servaient de points chauds (hot spots) d'érosion et de dépôt locaux, mais que tous les points chauds de sédiments ne sont pas des barrages de moulin et que tous les barrages de moulin ne sont pas des points chauds. Bien que les barrages de moulins historiques et les sédiments hérités soient répandus, ils n'ont pas nécessairement des impacts uniformes sur le rendement en sédiments"

Référence : Maaß AL et al (2021),  Human impact on fluvial systems in Europe with special regard to today’s river restorations, Environmental Sciences Europe, 33, 119 

07/11/2021

Si les truites pouvaient parler (Potherat 2021)

La biodiversité remarquable des cours d'eau du Châtillonnais et du plateau de Langres, en particulier ses populations de salmonidés réputées jusqu'au début des Trente Glorieuses, a-t-elle décliné depuis 50 ans à cause des ouvrages hydrauliques? Pierre Potherat apporte une réponse négative dans un remarquable livre sur l'histoire récente de ces rivières. Cet ingénieur géologue d'Etat aujourd'hui à la retraite montre que, bien au contraire, ce sont des travaux lourds visant à faire circuler l'eau plus vite qui ont asséché peu à peu les aquifères de la région, perturbé l'hydrologie de nappes et des lits, créé un environnement aquatique défavorable. Loin d'être des adversaires du vivant, les ouvrages bien gérés peuvent contribuer à son retour, ce que montre la co-existence séculaire des moulins et des truites. A condition pour les gestionnaires publics de ne plus se tromper de cibles dans leurs actions.

On connaît la chanson qu'ont voulu nous apprendre depuis quinze ans des syndicats de rivière, des agences de l'eau et d'autres acteurs publics : si les poissons ont disparu des rivières, c'est à cause des "obstacles à l'écoulement" qui les parsèment. La majorité de ces obstacles étant, dans nos campagnes, des moulins, des forges et des étangs. 

Cette chanson, Pierre Potherat n'en comprend ni le refrain ni les paroles. Pour une raison simple, elle ne correspond pas aux faits d'observation. Enfant du Châtillonnais, ingénieur géologue et ingénieur en chef de l'Etat pendant 45 ans, pêcheur passionné et amoureux des rivières, Pierre Potherat a passé des décennies au bord de la Seine, de l'Ource, des cours d'eau du plateau de Langres. Il a connu, comme de nombreux autres "anciens" de sa génération, des rivières poissonneuses et en particulier riches en truites dans les années 1940 à 1960. De mêmes témoignages existent en France-Comté voisine, on pense aux travaux pionniers de Jean Verneaux

Cette abondance des salmonidés a commencé à décliner après les années 1960. Or, les moulins et les étangs n'ont aucun rapport avec cette temporalité : ils sont présents depuis des siècles pour la plupart, et si une chose est à remarquer au 20e siècle, c'est plutôt qu'ils ont eu tendance à disparaître ou à ne plus être gérés comme outils de production. Il n'y a donc aucun sens à les accuser d'avoir fait fortement décliner des espèces qui n'avaient eu aucun problème particulier à co-exister avec eux pendant des générations d'humains, et plus encore de truites !



Qu'est-ce qui a changé à compter des années 1960 et 1970 ? 

Le livre de Pierre Potherat est une passionnante enquête à ce sujet. Elle n'aborde pas le point des pollutions, tout en signalant que c'est évidemment un sujet à explorer, mais se concentre sur les spécialités de l'auteur, l'hydrogéologie et l'hydromorphologie des rivières de zones calcaires, voire karstiques. L'étude montre que des travaux lourds ont été réalisés sur les cours d'eau du Châtillonnais, dans le but d'éviter les inondations, menant à des curages, reprofilages, recalibrages, chenalisations qui ont eu des effets pervers nombreux. Des habitats de berges et d'annexes hydrauliques ont disparu. L'hydrologie surtout s'en trouve affectée : l'eau des saisons pluvieuses n'étant ni retenue ni stockée dans les aquifères (où elle pourrait trouver des capacités de dizaines de millions de mètres cubes dans la zone étudiée!), elle file à l'aval pour laisser des débits d'été de plus en plus secs et fluctuants. Cette eau plus rare se réchauffant aussi plus vite, le cocktail n'est évidemment pas fameux pour les salmonidés et autres poissons de tête de bassin. Surtout si l'on y ajoute tous les ingrédients chimiques absents voici deux générations, et désormais ubiquitaires.

Pour retrouver la biodiversité remarquable des cours d'eau du Châtillonnais, Pierre Potherat propose des pistes. L'une d'elles est de revenir à une gestion intelligente et active des ouvrages qui, loin d'être des ennemis de la truite et du vivant en général, peuvent au contraire en être des alliés précieux. Une vision tout à fait conforme aux convictions des associations de riverains et propriétaires dont le but est de retrouver cette action conjointe autour des patrimoines naturels, culturels et techniques. Un ouvrage à lire et à faire lire !

Extrait de l'introduction

Par un bel après-midi de mai ou juin 1953, j’avais à peine 5 ans, je m’évertuais à dessiner sur  la route avec un petit arrosoir d’eau puisée dans le lavoir municipal de Charrey sur Seine.

Après une bonne demi-heure d’un labeur passionnant, en remplissant mon arrosoir je piquai la tête la première dans le bassin. Promptement une main charitable m’a empoigné par le fond de culotte et m’a tiré de ce mauvais pas. C’était la main de ma mère qui gardait un œil sur moi tout en faisant sa lessive.

Loin de me rebuter cette péripétie n’a fait que conforter mon attirance vers l’eau. Celle de la rivière, des biefs, des vannages aux eaux bouillonnantes et  chantantes, des mares et même celle des fossés, et autres chenaux, autant de milieux hébergeant une biodiversité aquatique exceptionnelle à l’époque. 

Rapidement j’ai emboité les pas de mon père s’en allant taquiner la truite le dimanche, mais je ne devins autonome qu’à l’ouverture de la pêche de 1960, année de mes 12 ans et de mon premier permis. 

Tout cela pour dire que j’ai assidument fréquenté les bords de Seine depuis la fin des années cinquante. J’en connaissais tous les méandres, toutes les coulées, tous les contre-courants et je les ai vus changer au fil des années avec un pincement au cœur, me demandant si mes petits-fils pourraient un jour goûter au plaisir de capturer quelques belles saumonées ou plus simplement apprécier les instants magiques passés au bord de ce cours d’eau dans une nature encore préservée et face à des paysages magnifiques avec en toile de fond le Mont Lassois qui livre peu à peu son histoire et ses secrets. 

Au début des années 2010, quelques temps avant de revenir profiter de ma retraite dans ma région natale, j’ai souvent eu l’occasion d’accueillir des amis dans le Châtillonnais et de leur faire visiter notre belle région. Tous, sans exception, ont été frappés par la beauté de nos paysages, en particulier celle de la « cuesta de Chatillon », barrière naturelle dont le flanc  sud supporte le vignoble du crémant du Châtillonnais et constitue la première manifestation morphologique de la présence du bassin parisien tout proche. Les trouées de la Laignes, de la Seine, de l’Ource et de l’Aube qui entaillent ce relief représentent autant de portes d’entrée vers Paris, le  site de Vix, vu du haut du Mont Lassois, étant la plus prestigieuse de toutes.

La tranquillité de nos forêts les a également séduits mais ils ont surtout remarqué l’abondance d’eau dans les nombreuses rivières descendant du versant nord-ouest du plateau de Langres. Le cours de celles-ci est jalonné de remarquables bâtiments anciens ayant hébergé des activités, pour certaines millénaires, couvrant la minoterie, l’huilerie, le sciage du bois, la fonte du minerai de fer et le travail de ce métal pour la production de divers outils et objets métalliques nécessaires au labeur journalier des habitants de nos campagnes : paysans, artisans, ouvriers agricoles, religieux etc.

Le plateau de Langres est considéré comme le château d’eau du bassin parisien au regard des abondantes précipitations qui alimentent l’immense aquifère constitué par les calcaires du Jurassique moyen et supérieur. Les rivières qui y naissent, en particulier la  Seine et ses affluents, possèdent, ou plutôt possédaient, des débits importants 6 à 8 mois de l’année. La disponibilité d’une énergie hydraulique gratuite et abondante rend donc compte de l’implantation d’innombrables installations constituant le petit patrimoine local pluriséculaire, parfois millénaire: moulins, scieries, fourneaux, forges, lavoirs etc.

Des aménagements importants pour l’époque moyenâgeuse, voire plus ancienne, ont été effectués. Il s’est agi en premier lieu  d’un recalibrage de la rivière à l’amont de vannages de manière à disposer d’une retenue d’eau suffisante pour faire tourner les roues hydrauliques. Le reste des travaux a consisté, soit en canaux d’amenée d’eau (biefs,) avec chenaux de restitution de celle-ci à la rivière (canaux de fuite), soit en vannes et chenaux de décharge, soit en déversoirs de sécurité. Parfois, de simples seuils ou digues disposés en travers de la rivière principale permettaient d’alimenter une ou deux roues hydrauliques. L’ensemble formait encore il y a peu un entrelacs de canaux et chenaux auxquels il convenait d’ajouter les fossés de drainage des prairies naturelles occupant le lit majeur des rivières. Le tout, parfaitement entretenu jusqu’il y a peu de temps, étant du plus bel effet esthétique et d’une grande importance dans la biodiversité.

Dès le début du XXème siècle, plus encore  après la grande guerre, l’activité artisanale, voire industrielle a commencé à décliner pour aboutir à la situation actuelle : plus aucun moulin, plus aucune forge, plus aucune scierie ne fonctionne au bord de l’eau. 

Cependant bien des bâtiments, avec leurs aménagements, subsistent, en particulier certains moulins ou forges, achetés par des particuliers pour en faire leur demeure principale, voire secondaire.

Ainsi sont restés certains ouvrages tels que d’anciens vannages agrémentés de cascades aux eaux tumultueuses qui restent des lieux de promenade très prisés des villageois ainsi que des gens de passage. 

Fort de l’attrait des paysages et de la richesse du  patrimoine de notre région je m’étais pris à rêver d’un circuit des moulins qui aurait pu attirer et intéresser nombre de visiteurs et apporter une plus-value au « Parc National des Forêts ». C’était sans compter sur la volonté des pouvoirs publics de faire appliquer sur les rivières du Châtillonnais la continuité écologique de la manière la plus dure qui soit en faisant financer à la collectivité l’effacement d’un maximum d’ouvrages.

Quand un peu avant 2010, j'ai eu vent de la mise en place d’un vaste programme de suppression des ouvrages hydrauliques qui jalonnent le cours de nos rivières, j’ai tout d’abord pensé à une « fake news », comme on dit aujourd’hui. Ce programme avait en effet pour objectif de favoriser le repeuplement naturel des cours d’eau en facilitant la circulation des poissons et des sédiments qui encombrent parait-il le lit mineur. Ceux qui, comme moi, sont nés dans l’immédiat après-guerre ou même bien avant, entre les deux guerres, peuvent témoigner de la quantité exceptionnelle de poissons peuplant les rivières du Châtillonnais jusque dans les années 60. Comment ont-ils fait, ces poissons, pour se reproduire jusqu’à cette époque alors que nombre des ouvrages fonctionnaient encore?  Bizarrement aucune association ni fédération de pêche n’a réagi  quand ces programmes ont été annoncés à l’orée du XXIème siècle. Peut-être une certaine confiance dans l’action des  pouvoirs publics  était-elle encore de mise?

Référence : Pierre Poterat, Si les truites pouvaient parler. L’histoire récente des rivières 
Plateau de Langres en général et du Châtillonnais en particulier. Les cas de la Seine et de l’Ource, 153 pages.

Pour se procurer le livre (13€) :
  • Office du Tourisme de Châtillon, 1 rue du Bourg, 21400 Châtillon
  • Musée Trésor de Vix, 14 rue de la Libération, 21400 Châtillon
  • Librairie Page 21, 3 rue du président Carnot, 21400 Châtillon
  • On en commandant directement à l'auteur à : p.potherat@orange.fr 

17/09/2021

Les petits ouvrages hydrauliques n'entravent pas la continuité sédimentaire (Colm et al 2021)

Les seuils, déversoirs, chaussées et autres petits ouvrages de rivières affectent-ils le transport des sédiments? Pas vraiment, répond une nouvelle étude de chercheurs européens ayant mesuré le transport réel des matériaux grossiers du lit de la rivière au-dessus d'un ouvrage à différents débits. Ce travail confirme d'autres analyses qui invalident l'idée d'une discontinuité sédimentaire notable liée aux petits barrages. Les scientifiques confirment ainsi ce que disaient les riverains de longue date : les sédiments de toute taille se retrouvent à l'amont comme à l'aval des ouvrages de moulins, étangs et autres sites modestes, les crues les plus importantes donnant lieu à des déplacements de matériaux grossiers au-dessus des crêtes, ou par voie latérale parfois. Dommage qu'en la matière, la France et l'Europe prennent des règlementations avant, et non après, le travail complet des scientifiques...


Casserly M. Colm et ses collègues ont étudié un déversoir situé sur une section de la rivière Boro, un cours d'eau de troisième ordre de Strahler à lit grossier, affluent de la rivière Slaney, dans le sud-est de l'Irlande. S'élevant au pied de la montagne Blackstairs dans le comté de Wexford, le Boro draine une superficie de 8,2 km2 au niveau du déversoir d'étude. L'ouvrage a une hauteur de 1,3 m, cf photo ci-dessus.

Voici le résumé de travaux exposant la méthodologie et les principales conclusions :

"Le transport de sédiments grossiers dans les systèmes fluviaux joue un rôle important dans la détermination de l'habitat physique dans les cours d'eau, du potentiel de frai et de la structure de la communauté benthique. Cependant, malgré plus d'une décennie de pression en Europe pour rétablir la continuité des cours d'eau en vertu de la directive-cadre sur l'eau (DCE), il y a eu relativement peu d'études empiriques sur la façon dont les structures au fil de l'eau de basse chute (les déversoirs) perturbent le processus et dynamique du transport de charriage. 

Dans cette étude, nous présentons une enquête sur la façon dont les sédiments grossiers sont transférés à travers un barrage à basse chute via la surveillance en temps réel du transport de charriage sur un déversoir dans le sud-est de l'Irlande. Les valeurs de débit critiques pour l'entraînement des particules sur la structure ont été dérivées de l'utilisation novatrice d'une antenne RFID fixe, associée à un enregistrement continu des niveaux d'eau et des sédiments capturés en aval à l'aide de pièges à sédiments de type fosse. L'antenne RFID fixe a été installée le long d'une crête de déversoir en utilisant à la fois des configurations "dessous" et "dessus" comme moyen de détecter le moment où les traceurs de charriage se sont déplacés au-dessus de la crête du barrage. 

Les résultats montrent que 10 % des traceurs déployés en amont ont été détectés passant par-dessus le seuil, tandis que 15 % supplémentaires non détectés ont été récupérés en aval. ces résultats indiquent que des matériaux de charriage en amont  aussi gros que le D70 (90 mm) peuvent se déplacer sur la structure lors de crues peu fréquentes. Cependant, des recherches approfondies de la zone ensemencée en amont du barrage suggèrent également que jusqu'à 43 % du nombre total peuvent être passés en aval, ce qui indique que les traceurs se sont déplacés sur le déversoir après que l'antenne a été endommagée lors d'un événement de fort débit, ou ont été manqué en raison de la vitesse des particules ou de la collision du signal. De plus, 30 des traceurs restés en amont se sont avérés soit avoir été enfouis en raison de l'afflux ultérieur de sédiments entrant dans le réservoir, soit avoir été remobilisés à travers le matériau de surface. Les valeurs de débit critiques indiquent des modèles de transport sélectifs par taille ainsi qu'une forte corrélation entre le débit de pointe de l'événement et la charge de fond totale capturée en aval. 

Ces résultats fournissent davantage de preuves que les structures à faible chute peuvent éventuellement adopter une morphologie qui permet le stockage intermittent et l'exportation ultérieure de la charge de fond d'un chenal en aval, comme l'ont supposé d'autres auteurs. Sur la base de ces résultats et de ceux d'autres études de terrain récentes, nous présentons un ensemble de modèles schématiques possibles qui offrent une base pour comprendre les façons uniques dont les barrages de basse chute peuvent continuer à perturber le transport des sédiments longtemps après avoir atteint leur capacité de stockage fonctionnelle. Les limites de l'utilisation d'une antenne RFID stationnaire et les recommandations possibles pour de futures études sont discutées."

Ce graphique montre la relation observée entre le diamètre des sédiments (abscisses) et le débit critique de transport pour passer au-dessus du seuil (ordonnées).


Discussion
Des études récentes ont fourni des preuves directes que les ouvrages à faible chute n'agissent pas comme des barrières complètes au transport de sédiments grossiers, des fractions granulométriques jusqu'à la médiane pouvant être transportées en aval (Casserly et al 2020; Peeters et al 2020; Magilligan et al 2021). Il y a donc eu, en ce domaine comme en bien d'autres, un abus de certains gestionnaires des rivières ayant prétendu que les ouvrages présentaient de graves problèmes pour l'équilibre sédimentaire des rivières. 

La continuité sédimentaire peut être un sujet pour des fleuves fragmentés par de grands barrages infranchissables et à forts volumes de réservoir, mais ce n'en est pas un pour les moulins, étangs, plans d'eau et autres ouvrages modestes. Dans ce dernier cas, les périodes de haut débit conservent au cours de l'année une capacité de transport sédimentaire vers l'aval. Il faut donc cesser d'inventer des problèmes là où ils sont inexistants.

Référence : Colm M.  et al (2021), Coarse sediment dynamics and low-head dams: Monitoring instantaneous bedload transport using a stationary RFID antenna, Journal of Environmental Management, 300, 113671

28/07/2021

Ralentir et diffuser les écoulements pour stocker l'eau

Des chercheurs publient une tribune sur l'enjeu de préservation et stockage de l'eau en situation de changement climatique rapide comme nous le connaissons aujourd'hui. Parmi les options: ralentir et diffuser l'eau dans les bassins versants. C'est un des rôles des ouvrages hydrauliques, dont la gestion écologique doit devenir notre politique publique, en lieu et place de leur absurde destruction. 

Zone humide en contrebas d'un bief de moulin.

Géraldine Picot-Colbeaux (hydrogéologue, BRGM), Marie Pettenati (hydrogéologue, BRGM) et Wolfram Kloppmann (géochimie isotopique, BRGM) publient un intéressant article sur le site d'analyse universitaire de l'actualité The Consersation. Cet article est dédié à la question de la préservation des ressources en eau pour les besoins humains en situation de changement hydroclimatique. "On parle de «gestion intégrée de la ressource en eau», qui vise à préserver le niveau des nappes d’eau souterraine, les débits des cours d’eau et à lutter contre les inondations et la salinisation des eaux en milieu côtier."

Les eaux souterraines sont contenues dans les "aquifères", formations rocheuses ou sédimentaires qui les stockent et qui se renouvellent plus ou moins vite. "Certains aquifères profonds contiennent des eaux de pluies tombées quand l’humanité taillait encore des silex ! D’autres, proches de la surface, contiennent de l’eau qui transite en quelques années. Sous nos latitudes, c’est en hiver, lorsque la végétation prélève moins d’eau, que les précipitations rechargent les aquifères."

Comme en témoignent les difficiles périodes de sécheresses dans certaines régions, impliquant des restrictions d'usage, la gestion de l'eau peut devenir critique quand se conjuguent la hausse des besoins humaines et l'incertitude climatique, avec des événements extrêmes plus probables (parfois de longues sécheresses, parfois des excès de pluie et des inondations, comme récemment en Allemagne, Belgique, Luxembourg et Angleterre). "À la question, «Manquerons-nous d’eau demain ?», la réponse est donc : «Nous en manquons déjà, localement et de plus en plus souvent»."

Les chercheurs rappellent les options de gestion intégrée de l'eau :

"Les solutions existent déjà, dans le monde et en France, depuis de nombreuses années. Mais il s’agit de les mettre en œuvre et de les intégrer dans des stratégies cohérentes de gestion des nappes :
– caractériser, suivre et prévoir sur la base de modèles fiables l’évolution des ressources et des besoins ;
– pratiquer la sobriété ;
– diminuer la pression sur la qualité de l’eau en diminuant la quantité de produits chimiques persistants et mobiles ;
– améliorer le traitement des eaux usées ;
– utiliser et réutiliser des eaux non conventionnelles après traitement ;
– retenir l’eau sur les territoires en ralentissant les écoulements et en stockant l’eau dans les milieux naturels."

On retient en particulier le dernier point : la nécessité de ralentir et diffuser les écoulements sur tous les territoires. Comme notre l'association l'a exposé à de nombreuses reprises, la politique de destruction des ouvrages hydrauliques transversaux au nom de la continuité écologique va à l'encontre de cet objectif. En voici quelques raisons :
Au lieu de détruire les ouvrages, nous devons de toute urgence les préserver et les doter d'une gestion hydro-écologique informée. 


10/05/2021

Les ouvrages hydrauliques réchauffent ou refroidissent l'eau selon leur nature (Seyedhashemi et al 2021)

Une étude française sur le bassin de Loire montre que, par rapport à une rivière non fragmentée, la présence de grands barrages tend à diminuer la température estivale de l'eau de 2°C, celle de succession de retenues plus petites tend à l'augmenter de 2,3°C. Cette moyenne recouvre néanmoins des dispersions notables dans le cas des rivières avec ou sans retenue. 

Le barrage de Naussac, situé dans la zone d'étude (CC BY-SA 2.0, Dimitri)

Hanieh Seyedhashemi et ses collègues ont étudié dans le bassin de Loire la signature thermique des rivières selon la présence de grands barrages, de retenues de plus petites dimensions ou d'un style fluvial plus naturel. 

Ils introduisent ainsi l'objet de leur recherche : "Les corridors fluviaux stockent, transforment et transportent la masse et l'énergie depuis les sources vers les océans. Bien que les rivières soient généralement analysées comme des systèmes lotiques, la distribution des plans d'eau lentiques (p. ex. lacs, réservoirs, étangs) le long du continuum fluvial est récemment apparue comme un facteur critique dans l'élimination de l'azote (Harrison et al., 2009; Schmadel et al., 2018) et le stockage du phosphore (Grantz et al., 2014) et des sédiments (Vörösmarty et al., 2003). Une préoccupation émergente concerne les effets cumulatifs des systèmes lentiques sur la température de l'eau des cours d'eau et des rivières, qui est un paramètre critique affectant l'eutrophisation des plans d'eau (Minaudo et al., 2018; Le Moal et al., 2019) et la répartition des communautés aquatiques (Cox et Rutherford, 2000; Poole et Berman, 2001; Ducharne, 2008)."

Les effets des masses d'eau lentiques sur la température des cours d'eau dépendent fortement de leurs caractéristiques individuelles et de leurs distributions spatiales. Ce qui complique les échelles d'analyse. Les auteurs proposent d'étudier le rapport entre température de l'air et de l'eau dans les bassins pour comprendre la dynamique des échanges de chaleur selon que les rivières sont fragmentées par divers types de retenues. 

Voici le résumé de leur recherche :

"Les ouvrages anthropiques (par exemple les grands barrages, les petits réservoirs et les retenues) se multiplient à l'échelle mondiale, influençant les régimes de température en aval de diverses manières, qui dépendent de leur structure et de leur position le long du continuum fluvial. 

En raison des multiples réponses thermiques en aval, il y a peu d'études caractérisant les tailles d'effet cumulatif à l'échelle du bassin versant. Ici, nous introduisons cinq indicateurs thermiques basés sur la relation de la température eau-air qui, ensemble, peuvent identifier les signatures thermiques modifiées par des barrages et des retenues. Nous avons utilisé cette approche de signature thermique pour évaluer un ensemble de données régionales de 330 séries chronologiques quotidiennes de température des cours d'eau provenant de stations du bassin de la Loire, en France, de 2008 à 2018. Ce bassin (100000 km2) est l'un des plus grands bassins versants européens avec des caractéristiques anthropiques et naturelles contratsées. Les signatures thermiques dérivées ont été contre-validées avec plusieurs caractéristiques connues du bassin versant, qui ont fortement soutenu leur séparation en signatures de type barrages, retenues et naturelles. Nous caractérisons le régime thermique de chaque signature thermique et nous le contextualisons à l'aide d'un ensemble de métriques thermiques pertinentes sur le plan écologique. 

Les résultats indiquent que les grands barrages ont réduit la température estivale des cours d'eau de 2 ° C et retardé le pic annuel de température des cours d'eau de 23 jours par rapport aux régimes naturels. En revanche, les effets cumulatifs des retenues en amont ont augmenté la température estivale des cours d'eau de 2,3 ° C et accru la synchronisation avec les régimes de température de l'air. Ces signatures thermiques permettent ainsi d'identifier et de quantifier les influences thermiques et écologiques en aval de différents types d'infrastructures anthropiques, sans information préalable sur la source de modification et les conditions de température de l'eau en amont."

Ce graphique montre la différence entre température de l'air (en gris) et température de l'eau dans les rivières à barrages (rouge), à retenues (vertes) ou de type naturel (bleu).

Extrait de Seyedhashemi et al 2021, art cit.


Cet autre graphique montre les variations observées selon les cours d'eau pour la température de l'eau en été (Tw summer), la température maximale mensuelle (maxTw), le nombre de jours à température > 20°C ou 15°C (DTw20), la différence maximale de température de l'eau dans l'année (max deltaTw), avec les mêmes codes couleur (rouge barrages, vert retenues, bleu naturel).


Extrait de Seyedhashemi et al 2021, art cit.

On observe au passage que les distributions de température d'été de l'eau (Tw) et températures maximales d'été (max Tw) se recoupent pour un grand nombre des sites naturels ou avec retenues. 

Concernant les retenues, les auteurs signalent notamment dans leur article que la couverture arborée a une influence négative notable sur la température. 

Discussion
Cette recherche confirme d'autres travaux ayant montré que les grands barrages tendent à refroidir l'eau quand les petits tendant à la réchauffer. Les déterminants sont notamment la hauteur de la colonne d'eau de retenue, la largeur de la surface de retenue, la présence ou non d'arbres en berge de la retenue. 

Il serait intéressant d'affiner le travail en précisant la nature des retenues. Le texte signale simplement une hauteur de moins de 15 m (pour les retenues hors barrage), mais cela laisse de la marge d'interprétation. Il existe en effet plusieurs dizaines de milliers d'ouvrages sur les rivières françaises, allant  de simples chaussées de moulins de 0,5m de hauteur à la retenue à peine perceptible jusqu'à des lacs de centaines d'hectares. Une prochaine étape pourrait être d'affiner le cas des rivières à retenue (le plus fréquent en France) pour analyser plus en détail les facteurs faisant varier la température, comme la densité, la surface, la spatialisation, la végétalisation de ces retenues sur le continuum.  

Référence :  Seyedhashemi H et al (2021), Thermal signatures identify the influence of dams and ponds on stream temperature at the regional scale, Science of the Total Environment, 766, 142667