Affichage des articles dont le libellé est Phosphore. Afficher tous les articles
Affichage des articles dont le libellé est Phosphore. Afficher tous les articles

14/02/2020

Le bilan biogéochimique des barrages, au-delà des idées reçues (Maavara et al 2020)

Sept chercheurs publient dans une revue de référence une synthèse des connaissances sur les effets biogéochimiques des barrages. Ils soulignent notamment que les ouvrages ont tendance à éliminer les excès de nutriments (azote, phosphore), parfois au détriment de leur réservoir qui devient eutrophe, mais au bénéfice du bassin versant et des estuaires. Le bilan carbone est complexe, dépendant de la superficie, de la latitude et de la température, les tropiques étant défavorables par rapport aux zones tempérées et boréales. Les successions de petits barrages peuvent avoir des effets plus intéressants qu'un grand barrage selon les paramètres que l'on veut améliorer dans un bassin versant. Ces chercheurs soulignent aussi que la destruction des barrages est susceptible d'avoir des effets négatifs, attestés par des retours d'expérience : excès de nutriments, de polluants et d'émission carbone. Ces points sont totalement absents dans la planification et le suivi de la politique française de continuité écologique, qui a au contraire mis en avant des arguments fantaisistes et trompeurs, comme la soi-disant "auto-épuration" des cours d'eau par destruction d'ouvrages. Nous devons cesser d'agir sans savoir, exiger une politique des rivières informée par des données et des preuves.

Taylor Maavara et ses six collègues proposent dans la revue Nature reviews, Earth & Environment une synthèse des connaissances sur les impacts biogéochimiques des barrages. Leur travail est notamment motivé par la forte croissance de la construction de barrages dans le monde, en raison de la transition énergétique bas-carbone pour prévenir le changement climatique. Le barrage fluvial est pratiqué depuis des millénaires, les premiers ouvrages ayant été construits en 2000 avant notre ère dans l'empire égyptien. Le nombre de barrages a augmenté régulièrement avant la Seconde Guerre mondiale, rapidement par la suite, atteignant un pic dans les années 1960 et 1970 en Amérique du Nord et en Europe occidentale. Une deuxième vague de construction de barrages a commencé au début des années 2000, avec plus de 3 700 barrages hydroélectriques planifiés ou en construction dans le monde, pour ceux qui ont une capacité de production supérieure à 1 mégawatt (MW).


Le cycle des nutriments dans une retenue évoluant dans le temps, source Maavara et al 2020, art cit.


Voici d'abord le résumé des points essentiels que mettent en avant les chercheurs :
"- L'élimination des nutriments dans les réservoirs de barrage modifie les cycles biogéochimiques globaux, avec des conséquences sur la structure et le fonctionnement de l'écosystème le long des réseaux fluviaux.
- L'importance globale des réservoirs en tant que sources et/ou puits de gaz à effet de serre reste fortement débattue.
- Le temps de résidence hydraulique du réservoir peut être utilisé pour développer des relations simples et prédire les éliminations des nutriments, bien que les petits réservoirs puissent avoir de grandes efficacités d'élimination.
- Les stratégies de gestion des barrages ont un impact sur le cycle des nutriments à toutes les phases du cycle de vie d'un barrage, y compris son effacement."

Dans le détail, cette publication comporte de nombreux point intéressants.

Les nutriments, tels que le carbone (C), l'azote (N), le phosphore (P) et le silicium (Si), sont transportés et transformés le long de ce que Maavara et ses collègues nomment le "continuum aquatique terre-océan" (LOAC), formant la base des réseaux alimentaires en eau douce et marine. Les réservoirs de barrage agissent comme des réacteurs "au sein du flux", augmentant le temps de séjour le long du continuum.

Les auteurs remarquent : "Ces augmentations du temps de séjour des nutriments améliorent leurs transformations des formes dissoutes aux formes particulaires à travers la productivité primaire ou l'adsorption, la sédimentation et la rétention, et l'élimination gazeuse et/ou la fixation atmosphérique des nutriments dans les réservoirs. Selon les objectifs locaux ou régionaux de gestion des nutriments, le renforcement du cycle biogéochimique et l'élimination dans les réservoirs peuvent être considérés soit comme un avantage (par exemple, le réservoir réduit le flux de nutriments en aval vers les masses d'eau eutrophiques) ou comme un problème (si le réservoir lui-même souffre de eutrophisation ou si elle altère la stœchiométrie des nutriments de telle sorte qu'elle favorise l'eutrophisation en aval)."

Une précision est apportée sur les petits barrages, qui contribuent eux aussi à cette auto-épuration des nutriments:

"Bien qu'il existe généralement une relation positive entre l'ampleur de l'élimination des nutriments et le temps de résidence d'un réservoir, les petits réservoirs peuvent avoir une réactivité biogéochimique disproportionnellement élevée par unité de surface ou de temps. Par exemple, la constante de vitesse de décomposition OC (kOC) du premier ordre, qui décrit la réactivité par unité de temps, augmente à mesure que le temps de résidence diminue. Lorsqu'elle est mise à l'échelle, cette relation entraîne une diminution des constantes de vitesse de minéralisation du carbone organique avec la distance le long du continuum terre-océan; cette diminution est due à la décomposition de matériaux hautement réactifs dans les cours d'eau d'amont à faibles temps de résidence et au transport subséquent en aval des matériaux moins labiles vers des plans d'eau plus grands avec des temps de résidence plus élevés. Par exemple, dans une analyse de plus de 200 lacs et réservoirs, des relations inverses entre le temps de résidence et les constantes de vitesse d'élimination pour le phosphore total, l'azote total, le nitrate et le phosphate ont été identifiées. Étant donné que les petits plans d'eau ont de très faibles débits, les flux absolus de nutriments ont toujours tendance à être faibles, mais lorsque de nombreux petits réservoirs sont reliés le long du continuum terre-océan, leur capacité d'élimination des nutriments peut être élevée. Le mécanisme responsable d'une plus grande réactivité des nutriments dans les petits plans d'eau a été attribué à l'augmentation du rapport surface de contact interface sédiment-eau par rapport au volume à mesure que la taille du plan d'eau diminue"

Faut-il préférer une succession de petits barrages à un grand barrage? Les scientifiques n'excluent pas l'option :

"Une question clé en suspens est de savoir si la construction d'une série de petits barrages en cascade au lieu d'un seul grand barrage est préférable pour l'environnement. Les preuves suggèrent que plusieurs petits réservoirs avec des temps de résidence hydraulique qui correspondent au même temps qu'un seul grand réservoir élimineront les nutriments et réduiront les charges de nutriments en aval plus efficacement qu'un seul grand réservoir. Des «pré-barrages» (petits barrages en amont) qui réduisent les charges de nutriments dans les réservoirs en aval ont parfois été construits pour atténuer les problèmes d'eutrophisation en aval. Il est possible d'utiliser davantage des barrages ou des pré-barrages pour atténuer les problèmes d'eutrophisation côtière, en particulier s'il est fortement nécessaire de réduire les charges de P. L'incertitude avec cette approche est que les pré-barrages peuvent simplement servir à aggraver les problèmes d'eutrophisation plus en amont, tout en amplifiant davantage les autres changements écosystémiques associés à la régulation des cours d'eau. Les preuves de l'efficacité du pré-barrage sont également mitigées - même avec une conception soignée axée sur la maximisation de la rétention de P et de N dans les pré-barrages en amont des réservoirs d'eau potable allemands, il a été recommandé que les pré-barrages soient vidés et dragués tous les 5 à 10 jours afin de rester efficace. Enfin, il existe peu d'informations disponibles sur l'élimination de chaque élément nutritif les uns par rapport aux autres dans les petits systèmes."

Concernant les gaz à effet de serre, le bilan des barrages est complexe.

Les estimations mondiales des émissions de dioxyde de carbone (CO2) et de méthane (CH4) des surfaces des réservoirs varient considérablement car les chercheurs n'ont pas les mêmes bases de superficie des réservoirs, ni les mêmes modèles.

"Sur la base d'une surface mondiale de réservoir de 1,5 × 106 km2, on a estimé que 273 Tg C CO2/an et 52 Tg C CH4/an sont émis par les réservoirs chaque année. En utilisant une zone de réservoir mondiale de 3,05 × 105 km2, les émissions ont été estimées à 36,8 Tg C CO2 an − 1 et 13,3 Tg C CH4 an − 1. Pour les réservoirs mondiaux d'hydroélectricité (superficie = 3,4 × 105 km2), les émissions annuelles sont estimées à 48 Tg C sous forme de CO2 et 3 Tg C sous forme de CH4. Cependant, tout le carbone éliminé dans les réservoirs n'est pas converti en gaz à effet de serre, car l'enfouissement du carbone organique (OC) dans les réservoirs mondiaux a été estimé à 26 Tg C /an (superficie = 3,05 × 105 km2), 60 Tg C /an (superficie = 3,5 × 105 km2), 160–200 Tg C/an (superficie = 4,0 × 105 km2) et 290 Tg /an (superficie = 6,6 × 105 km2). Par unité de surface, ces flux d'émissions mondiaux se situent dans une marge plus petite, avec des émissions mondiales allant de 120 à 181 g C CO2/m2/an et des émissions allant de 35 à 44 g C CH4/m2/an. A l'inverse, les flux d'enfouissement surfaciques varient considérablement, de 85 à 500 g C/m2/an"

Au sein de ces estimations mondiales, des différences notables dans les émissions de gaz à effet de serre des réservoirs sont observées au niveau régional. "Les émissions de carbone gazeux des réservoirs des régions tropicales sont généralement plus élevées que les émissions des réservoirs boréaux et tempérés, en partie en raison de leurs grandes surfaces, des volumes élevés de biomasse et de CO du sol inondées et des températures de l'eau plus chaudes", soulignent les chercheurs.

Les scientifiques soulignent également divers problèmes liés aux effacements de barrage.

L'effacement des barrages peut relarguer des quantités importantes de gaz à effet de serre (GES): "les zones d'inondation nouvellement créées (ou recréées), avec des sédiments riches en matières organiques et des variations fréquentes des niveaux d'eau, pourraient également devenir des points chauds pour les émissions de GES après la suppression d'un barrage. Cette idée est attestée par l’ampleur des émissions hypothétiques d’équivalent CO2 des dix plus grands réservoirs des États-Unis une fois qu’ils sont effacés: après 100 ans de barrage, les émissions post-démantèlement dépasseraient de neuf fois celles des émissions du réservoir sur sa durée de vie. À l'heure actuelle, aucune stratégie pour éviter cette conséquence de l'enlèvement du barrage n'a été élaborée."

Autre risque, la remobilisation des nutriments et contaminants, y compris des polluants persistants comme le PCB. "L'héritage des éléments nutritifs et contaminants, généralement défini comme les éléments ou les composés qui restent dans le paysage ou le système au-delà d'un an après leur application, s'accumulent dans les sédiments du réservoir au cours de la durée de vie d'un barrage, puis sont érodés en aval en raison de l'augmentation des débits lors de la suppression des barrages. La remobilisation et les impacts en aval de la remobilisation des éléments nutritifs et des contaminants hérités sont de plus en plus reconnus et discutés dans le contexte de la construction et de l'élimination des barrages. Par exemple, les effets des contaminants hérités ont été observés à New York, aux États-Unis, où l'utilisation industrielle de biphényles polychlorés (PCB) à Fort Edward et à Hudson Falls a entraîné une accumulation de PCB dans les sédiments du réservoir au-dessus du barrage hydroélectrique de Fort Edward. Ces contaminants hérités ont été mobilisés et libérés en aval après le retrait du barrage en 1973, et le transport des PCB continue d'être documenté aujourd'hui, malgré des efforts massifs de restauration"

Au final, les chercheurs plaident pour une approche équilibrée des coûts et bénéfices au plan biogéochimique :

"Les discussions qui présentent tous les barrages comme problématiques ne sont pas productives, tout comme les discussions qui louent les barrages en tant que source d'énergie durable la plus viable à l'ère du changement climatique sont trompeuses. Il est peu probable que le barrage des rivières pour produire de l'énergie, contrôler les inondations et équilibrer la distribution inégale de l'eau au fil du temps ne s'arrête pas. Si des barrages sont construits sans tenir compte de leurs impacts sur le cycle des éléments nutritifs, les modifications des ratios d'éléments nutritifs côtiers, l'augmentation de la prévalence des efflorescences d'algues, les émissions de GES inutilement importante, le remplissage et l'eutrophisation des réservoirs continueront probablement. Cependant, la construction et la gestion responsables des barrages - de la conception à la déconstruction, et dans le contexte de l'ensemble du bassin versant - peuvent être réalisables en équilibrant les impacts environnementaux des barrages avec les services qu'ils fournissent. Sur la base des impacts biogéochimiques du barrage discutés dans cette revue, nous postulons que la biogéochimie du continuum terre-océan devrait être considérée à chaque étape du cycle de vie d'un barrage, et idéalement pendant sa conception et sa planification".

Discussion
Ces travaux mettent de nouveau en lumière des éléments qui sont systématiquement gommés en France dans la gestion des ouvrages hydrauliques, au profit d'une "novlangue" administrative simpliste:
  • les travaux de recherche (nombreux) sur les grands barrages et ceux (rares) sur les petits barrages ne donnent pas toujours les mêmes résultats, ils sont contexte-dépendants, ce qui interdit des généralisations comme on en lit bien trop dans le discours public;
  • certaines assertions qui ont été avancées, comme l'auto-épuration des rivières par suppression de barrages, se confirment être erronées voire manipulatrices. Les nutriments en excès sont un problème de source des pollutions dans les bassins et à tout prendre, les barrages en permettent la gestion plus fine, avec un rôle plus positif que négatif de dépollution des eaux;
  • le bilan carbone et donc d'effet de serre est tout aussi complexe, il va dépendre des paramètres locaux (latitude, végétation, température), et le fait que des réservoirs puissent avoir des bilans négatifs suggèrent qu'il faut les rentabiliser au maximum (principe du multi-usage pour l'eau potable, l'irrigation, l'énergie, le soutien d'étiage) et réfléchir avant leur construction (même si le problème est surtout aigu en zone tropicale et en réservoir à végétation noyée);
  • l'effacement des barrages est loin d'être anodin, il peut avoir des effets négatifs sur les excès de nutriments, sur les polluants et sur l'effet de serre.

Un incroyable amateurisme a entouré depuis 10 ans la réforme de continuité écologique en France. Nous devons en sortir, exiger une planification publique à bases scientifiques sérieuses, et non à propos militants sur des idéaux de "nature sauvage". Il faut déjà des mesures physiques, chimiques et biologiques bien plus nombreuses, mais aussi de vrais modèles d'interprétation de ces données par bassin, avec des réflexions collectives qui ne soient pas une simple langue de bois fondée sur la répétition de préjugés, d'approximations et d'imprécisions.

Référence : Maavara T et al (2020), River dam impacts on biogeochemical cycling, Nature reviews, Earth & Environment, 1, 103–116

06/04/2018

Facteurs de variation des invertébrés aquatiques en rivière: poids de la pollution et de la morphologie (Corneil et al 2018)

Une nouvelle étude menée sur plus de 1000 sites de mesure dans les rivières françaises confirme que l'indicateur de qualité fondé sur les invertébrés (I2M2) est davantage impacté par les facteurs de pollution physico-chimique de l'eau que les facteurs hydromorphologiques changeant les débits ou les habitats. Plus de la moitié de ces variations d'insectes n'est cependant pas expliquée par des causes anthropiques, du moins par celles sur lesquelles on dispose de données pour les mettre dans le modèle. Ainsi, l'effet des pesticides et autres micropolluants n'est toujours pas intégré à grande échelle faute d'information en quantité et qualité suffisantes. Ces travaux d'écologie quantitative rappellent la complexité des impacts. Et la nécessité de mener des analyses diagnostiques sur chaque bassin versant quand on définit un programme public visant à atteindre le bon état écologique et chimique au sens de la directive cadre européenne sur l'eau. Des politiques mal informées produisent des choix mal priorisés.

Dans ce travail que vient de publier la revue Hydrobiologia, Delphine Corneil et ses collègues ont utilisé les données de 1015 sites du réseau de surveillance français, avec des prélèvements réalisés au cours de la période 2008-2009. Les sites ont été répartis dans 22 hydro-écorégions et ont couvert toutes les tailles de rivières. Pour décrire les impacts sur les cours d'eau, 21 mesures ont été retenues, concernant à la fois l'usage des sols, la morphologie des lits et berges, la qualité de l'eau. Ces pressions agissent tantôt au niveau de sites et de tronçons (quelques centaines de mètres), tantôt à échelle du bassin versant.

L'indice multimétrique invertébrés (I2M2), mis au point pour la directive cadre européenne sur l'eau (DCE 2000), répond à 20 pressions physico-chimiques et 7 pressions hydromorphologiques. Il est fondé sur la comparaison avec des sites de référence jugés peu impactés par l'homme. Ses données d'échantillonnage sont à la fois structurelles (richesse et diversité taxonomiques) et comportementales (taux d'ovoviviparité et de polyvoltinisme dans l'assemblage d'invertébrés, sensibilité à la pollution par ASPT).

Un modèle statistique a été construit par les chercheurs en vue d'analyser et pondérer les différents facteurs susceptibles de faire varier l'I2M2.

Le tableau ci-dessous (cliquer pour agrandir) indique les facteurs ayant un effet significatif, avec leur coefficient de régression (première colonne gauche) et la variation de ces coefficients selon 13 types de rivière (types définis par une analyse statistique préalable permettant de grouper des clusters cohérents selon leur réponse aux impacts).



Poids des facteurs ayant un impact significatif sur l'I2M2 dans l'ensemble des cours d'eau, in Corneil et al 2018, art cit, droit de courte citation.

On observe notamment dans ce tableau que
  • les facteurs à effet négatif sur le score I2M2 sont la densité de barrages, l'urbanisation, la rectification, l'érosion, les marqueurs de pollution (demande en oxygène DBO5, ammonium, nitrites, nitrates, phosphore total),
  • les facteurs les plus impactants concernent la dégradation de la qualité de l'eau par les nutriments,
  • la densité de barrages vient au même niveau que la rectification du lit,
  • ce modèle n'explique toutefois que 45% de la variance des scores I2M2 (tous facteurs confondus).
Commentaire des auteurs : "Les valeurs I2M2 ont généralement été plus fortement altérées par les pressions physiques et chimiques (concentrations en éléments nutritifs et en matière organique) que par les altérations hydromorphologiques. Dans les cours d'eau de cette étude, les assemblages de macro-invertébrés semblent être plus sensibles aux facteurs de stress liés à l'eutrophisation (concentrations totales d'azote et de phosphore) qu'aux pressions hydromorphologiques agissant sur le débit et la diversité de l'habitat. Cette tendance n'était pas spécifique à une zone géographique donnée. Johnson et Hering (2009), Dahm et al (2013), et Villeneuve et al (2015) ont déjà observé une plus grande sensibilité des indices biotiques aux paramètres physiques et chimiques qu'à l'hydromorphologie, pour les assemblages de macro-invertébrés, de poissons et de diatomées."

Discussion
Ce travail confirme les résultats d'une précédente étude de la même équipe (Villeneuve et al 2015) et vient en complément d'un autre récemment publié, visant à comprendre de manière plus dynamique les interactions entre les impacts (Villeneuve et al 2018).

La densité de barrage a un poids négatif sur les scores I2M2. Les barrages créent des habitats lentiques de dimension importante, à fonds limoneux ou sablo-limoneux, qui sont habituellement absents des rivières (au moins à cette dimension). Comme l'I2M2 est fondé par construction (Mondy et al 2012) sur un calcul d'écart à une rivière "naturelle" (minimum de modification chimique ou morphologique liée à l'homme), un cours d'eau présentant davantage de retenues artificielles aura davantage de déviation de peuplement. Il serait intéressant d'avoir dans ce type de recherche les détails des scores internes de l'I2M2, pour comprendre plus en détail quels traits varient au sein du score selon l'impact concerné. Egalement d'avoir des descripteurs plus fin des barrages (hauteurs, débits dérivés) et des analyses d'éventuels effets de seuil concernant les taux d'étagement ou d'ennoiement. Certains bassins hyrographiques fondent aujourd'hui des choix d'investissement public sur des outils dont la base scientifique est faible, donc le résultat non garanti.

La domination des facteurs de pollution chimique dans la dégradation des macro-invertébrés est confirmée par ce travail après d'autres, et en forme la principale conclusion. Seuls les nutriments étaient pris en considération alors que plusieurs centaines de molécules susceptibles d'avoir des effets sur le vivant circulent dans les eaux (pesticides, médicaments, produits industriels et de consommation, etc.), certains chercheurs estimant que l'impact en est sous-estimé aujourd'hui (Stehle et Schulz 2015). Comme pour la densité de barrages, il serait utile d'avoir des analyses plus détaillées de la réponse des invertébrés aux polluants.

Référence : Corneil D et al (2018), Introducing nested spatial scales in multi-stress models: towards better assessment of human impacts on river ecosystems, Hydrobiologia, 806, 1, 347–361

15/07/2017

Faible effet des barrages par rapport à la pollution sur les rivières centre-européennes (Lemm et Feld 2017)

Les rivières subissent des stress multiples qui affectent la qualité de leurs eaux et leurs milieux. Mais ce constat ne suffit plus : les chercheurs visent à comprendre en détail le poids relatif et l'effet conjugué des impacts, notamment pour orienter les choix prioritaires des politiques publiques. Deux chercheurs allemands, analysant les invertébrés de rivières de plaine d'Europe centrale (Allemagne, Pologne, Pays-Bas), montrent que les premiers facteurs de dégradation sont les accumulations de sédiments fins et la diffusion des polluants, avec comme principaux prédicteurs les usages agricoles et urbains des sols. Les barrages n'ont qu'un poids mineur. En France, ni les agences de l'eau, ni l'Agence pour la biodiversité ni les gestionnaires ne recourent à ce type de modélisation des bassins versants. L'argent public est dépensé dans le plus grand désordre et dans une méconnaissance de la dynamique réelle des milieux, parfois au bénéfice disproportionné de modes lancées par des lobbies (comme la continuité écologique). 

Jan U. Lemm et Christian K. Feld (université de Duisbourg et Essen) ont exploité 125 jeux de données (2002-2002) assez complets pour disposer d'informations sur l'usage des sols, l'hydromophologie, la physico-chimie, la qualité sédimentaire et des co-variables naturelles, cela sur des rivières de plaine à fond sableux de Pologne, d'Allemagne et des Pays-Bas. Parmi les variables biologiques, les macro-invertébrés ont été retenus comme indicateurs de qualité de l'eau (échantillonnage sur sites à raison de 20 unités représentatives de micro-habitats ; analyse des cycles reproductifs, stages aquatiques, résistance des oeufs, divers traits de vie).

Sur cette base, les chercheurs ont procédé à une analyse statistique (composantes principales) pour définir les stresseurs significatifs parmi les 16 mesures d'impact disponibles. Une analyse de graphe a également été réalisée (voir ci-dessous) ainsi qu'une modélisation à régression linéaire généralisée pour analyser la réponse de 14 traits biologiques aux stresseurs.

Quelles sont les principales conclusions des chercheurs ?

  • Le premier axe de l'analyse en composante principale montre l'influence de l'agriculture (axe 1, 31% de variance expliquée) et de la morphologie (axe 2, 18% de variance).
  • L'analyse de graphe montre que quatre stresseurs principaux sont co-occurrents : taux de champs cultivés, de superficie urbaine, de sédiments fins et d'orthophosphate.
  • Le modèle linéaire montre que 20% des pressions ne sont pas additives (elles sont soit synergistiques, ie se renforçant, soit antagonistes, ie s'annulant). Les interactions additives concernent au premier chef les zones urbaines et les sédiments fins ainsi que les zones agricoles et les orthophosphates. Pour les non additives, c'est l'association des zones agricoles et des sédiments fins qui ressort le plus clairement.


Analyse en graphe. Les points ou noeuds représentent les impact (plus le noeud est de taille importante, plus l'effet est marqué), les liens entre les points représentent la force de l'association statistique. On observe notamment le rôle plutôt mineur des barrages("dams"). Extrait de Lemm et Feld 2017, art cit, droit de courte citation.

Discussion
Il manque de nombreux stresseurs dans l'analyse de Jan U. Lemm et Christian K. Feld, en particulier les pollutions autres que les nutriments (reprotoxiques, neurotoxiques, génotoxiques, perturbateurs endocriniens, etc.), dont la charge est souvent forte dans les plaines alluviales et dont certains chercheurs pensent que l'effet est aujourd'hui sous-estimé (voir par exemple Stehle et Schulz 2015). Il y a donc quelques raisons d'estimer que la variance de la qualité des milieux, en particulier des invertébrés, est davantage liée à des facteurs chimiques ici écartés faute de données.

Les chercheurs concluent : "Notre approche est utile pour visualiser une structure de stresseurs co-occurrents et les pressions au sein, par exemple, d'un bassin versant spécifique et pour quantifier les interactions possibles entre ces impacts humains. Elle peut aussi aider à avoir une idée des impacts humains qui sont d'importance mineure".

Hélas, aucune approche de ce type n'est développée en France. Plusieurs centaines de millions d'euros d'argent public sont dépensés chaque année par les Agences de l'eau dans des programmes qui ne sont pas fondés sur des modèles scientifiques de discrimination et pondération des impacts, mais sur des approches très sommaires ne possédant quasiment aucun pouvoir descriptif, explicatif et prédictif. Quant à l'Agence française pour la biodiversité (que l'Onema a intégré depuis le 1er janvier 2017), elle ne témoigne d'aucune rigueur dans les prescriptions de terrain visant à faire entrer la politique des rivière dans un âge scientifique, en procédant à des modélisations hydro-écologiques avancées qui permettrait d'avoir une vue globale du bassin au lieu de multiplier des actions sur site, selon des méthodes parfois datées et discutables d'écologie de la conservation. La France prétend ainsi faire de l'écologie sans procéder par la base de toute action sérieuse en ce domaine, à savoir l'acquisition, la bancarisation et l'interprétation de données de bonne qualité sur les milieux que l'on veut restaurer ou conserver.

Enfin, on observe que l'analyse multi-impacts de Lemm et Feld ne fait pas particulièrement ressortir les barrages comme un impact majeur sur la qualité des rivières de plaines telle que mesurée par les invertébrés : les ouvrages hydrauliques ne concernent ici qu'une partie des 18% de variance du second axe de l'ACP. Cette conclusion rejoint celles d'autres travaux ayant procédé, non pas à des analyses de sites sur des variations locales des espèces, mais à des analyses d'hydro-écologie quantitative sur des bassins ou des groupes de bassins (lire par exemple nos recensions de Wang et al 2011Van Looy et al 2014, Villeneuve et al 2015, Radinger et Volter 2015Cooper et al 2016). Cela implique que l'on doit développer une politique des ouvrages hydrauliques plus différenciée, au lieu de l'actuel discours simpliste ou dogmatique selon lequel tout ouvrage en rivière serait un problème grave pour les milieux. On voit également que le mot d'ordre des gestionnaires français de la "circulation des sédiments" n'a pas d'intérêt particulier dans les bassins qui sont soumis au problème d'érosion des sols agricoles et de dépôts de sédiments fins qui vont de toute façon affecter les substrats. Le choix de restauration de la continuité en long a une bonne probabilité d'aggraver le problème de cette gestion sédimentaire au niveau des plaines alluviales et des estuaires.

Référence : Lemm JA, Feld CK (2017), Identification and interaction of multiple stressors in central European lowland rivers, Science of the Total Environment 603–604, 148–154

04/04/2016

Les barrages stockent 12% des excès mondiaux de phosphore (Maavara et al 2016)

L'Onema et les Agences de l'eau prétendent que les ouvrages hydrauliques nuisent à l'auto-épuration des rivières, argument pour mieux les effacer. Les chercheurs préfèrent s'intéresser à la réalité, à savoir l'exact opposé de la propagande administrative française : le rôle des barrages dans l'épuration des eaux polluées de divers effluents d'origine humaine. Une nouvelle étude de Taylor Maavara et sept collègues parue dans les PNAS établit ainsi qu'à l'échelle mondiale, 12% de la charge totale en phosphore sont éliminés par les barrages, chiffre qui pourrait atteindre 17% en 2030. Le phosphore est l'un des principaux responsables de l'eutrophisation des bassins aval, des lacs, des estuaires et des baies. Supprimer les barrages, c'est donc aggraver le bilan chimique de qualité de l'eau, ce qu'interdit la DCE 2000. 

L'activité humaine moderne perturbe à échelle planétaire les grands cycles naturels : eau, carbone, azote, phosphore, etc. Les fertilisants agricoles, l'érosion ou le lessivage des sols et les effluents des stations d'épuration induisent un excès de composés phosphorés dans l'eau. La charge globale en phosphore a ainsi doublé depuis l'époque pré-humaine, c'est-à-dire que plus de la moitié du phosphore circulant dans les masses d'eau est d'origine anthropique.

Le phosphore est rare dans la nature, et donc très vite assimilé dans les écoystèmes. Etant l'un des principaux facteurs limitants de la productivité primaire des milieux aquatiques, ses excès entraînent une eutrophisation des milieux. Si les barrages sont reconnus comme étant eux aussi un impact anthropique sur les rivières, ils interagissent avec le phosphore dans un sens plutôt favorable, en retenant, stockant ou éliminant une partie de la charge qui se trouve ainsi soustraite du continuum fluvial.

Pour évaluer le phénomène, Taylor Maavara et ses collègues ont produit un modèle de bilan de masse en séparant le phosphore total (PT) en quatre composantes : phosphore total dissous (TDP), phosphore organique particulaire (POP), phosphore échangeable (EP, les orthophosphates) et phosphore particulaire non réactif (UPP). La part biodisponible du phosphore (celle qui peut changer l'équilibre nutritif et que l'on nomme sa fraction réactive) concerne les trois premières formes. Le modèle consiste à estimer la part retenue par les barrages dans chaque compartiment, en fonction des autres paramètres d'efficacité de la séquestration comme le temps de résidence hydraulique (ci-dessous, représentation simplifiée des flux entrants et sortants du modèle).



Extrait de Maavra et al 2016, art cit, droit de courte citation.

Résultat de ce travail : les grands barrages retiennent en moyenne environ 40% de la charge de phosphore qu'ils reçoivent. Mais à l'échelle globale, compte-tenu de l'absence de barrages sur un grand nombre de rivières et de leurs dimensions variables, la proportion effectivement retenue serait de 12% de la charge totale de phosphore en 2000. Au regard des projets hydro-électriques annoncés dans les pays émergents d'Amérique du Sud, Afrique et Asie (3700 ouvrages programmés), ce chiffre pourrait monter à 17% en 2030.

Malgré ce rôle positif des ouvrages hydrauliques, la séquestration n'est donc pas suffisante pour contenir les excès de nutriments dont souffrent les milieux aquatiques. Cela suppose d'agir à la source des émissions ou sur d'autres modes de rétention dans les bassins versants.

Conclusion
Cette nouvelle étude vient après bien d'autres pour montrer le rôle positif des barrages dans la régulation des pollutions chimiques de l'eau (voir cette synthèse et notre rubrique auto-épuration) Pour quelle raison la France met-elle en avant la mystification de "l'auto-épuration des cours d'eau", comme si les contaminants disparaissaient magiquement des milieux une fois supprimés les seuils et barrages? Il faut probablement y voir la enième pseudo-rationalisation administrative de notre incapacité à lutter contre les pollutions à la source. Cette question est à mettre en avant dans tout projet d'effacement, car la Directive cadre européenne sur l'eau (DCE 2000) telle qu'elle est interprétée par la Cour de justice de l'Union européenne interdit tout projet dont on sait à l'avance qu'il peut dégrader l'un des compartiments de qualité de l'eau. Par exemple, alors que les pêcheurs de saumons et autres improbables "amis de la nature" trépignent pour effacer les barrages de la Sélune au profit de leur loisir auto-proclamé d'intérêt général, a-t-on au moins modélisé l'effet futur sur la baie du Mont Saint-Michel, sachant que le bassin versant de la rivière est très dégradé?

Référence : Maavara T et al (2016), Global phosphorus retention by river damming, PNAS, 112, 51, 15603–15608