Affichage des articles dont le libellé est Turbine. Afficher tous les articles
Affichage des articles dont le libellé est Turbine. Afficher tous les articles

24/11/2022

Mortalité des poissons dans les dispositifs hydro-électriques (Radinger et al 2022)

Trois chercheurs viennent de publier un passage en revue de ce que l’on sait et ne sait pas sur la mortalité des poissons passant dans des dispositifs de production hydro-électrique : turbines, roues, vis d’Archimède. La bonne nouvelle est que cette mortalité (en moyenne autour de 22%) peut tendre vers zéro sur les meilleurs sites, ce qui indique les voies de progrès pour les décennies de transition à venir. Mais pas mal de données manquent encore pour analyser l’impact sur les populations de poissons, en particulier la proportion réelle de ces poissons qui s’aventurent dans les zones de turbinage plutôt que dévaler ailleurs. 
 
Johannes Radinger, Ruben van Treeck et Christian Wolter ont passé en revue les données disponibles sur la mortalité des poissons en turbine et autres dispositifs hydro-électriques. Leur ensemble de données contenait 1058 évaluations de la mortalité obtenues à partir de 249 expériences rapportées dans 91 études. Des évaluations de la mortalité ont été menées sur 122 sites dans 15 pays. Les types de turbines comprenaient des Kaplan (n = 119 expériences), Francis (n = 72), les turbines à très basse chute (VLH) (n = 15), les vis d'Archimède (n = 22), les roues hydrauliques (n = 11), les turbines cross-flow (n = 5) et quelques autres types de turbines (par exemple, turbine hydrostatique et turbine Pelton) (n = 5). Les données ont fourni 276 890 individus de 75 espèces dans 27 familles et 15 ordres.

Ce graphique montre les mortalités observées dans le passage de l’équipement hydro-électrique, selon la nature de celui-ci.


Extrait de Radinger et al 2022, art cit.

Légende : relations entre l'ordre taxonomique, l'échelle hydroélectrique, le type de turbine et la mortalité dans les évaluations de la mortalité des poissons dans les turbines hydroélectriques (Oth, autres ordres de poissons n = 11 906 ; VLH, turbine à très basse chute n = 14 598 ; vis, vis d'Archimède n = 18 427 ; Ww, roue hydraulique n = 5178 ; Cf, turbine tangentielle n = 5359 ; Ott, autre type de turbine n = 2862). La largeur des bandes est proportionnelle au nombre d'individus. L'échelle hydroélectrique fait référence à la capacité de production d'une centrale hydroélectrique (vSHP, très petite hydroélectricité de < 1 MW ; SHP, petite hydroélectricité de 1 < 10 MW ; et LHP, grande hydroélectricité de ≥ 10 MW). Le nombre de poissons n'est fourni que pour les groupes de plus de 20 000 individus. 

Parmi toutes les études, espèces et milieux, en moyenne 22,3 % (n = 61 797 individus) de tous les poissons passant par les turbines ont été tués ou ont subi des blessures graves, potentiellement mortelles. Les 77,7 % restants (n = 215 093 individus) ont été évalués comme indemnes ou sublétalement blessés.

Ce graphique montre les mortalités rapportées selon les poissons et les types de turbines étudiées (on remarque en mauve la fourchette importante d'incertitude à 95%):


Extrait de Radinger et al 2022, art cit.

Légende : relation entre la longueur du poisson et le taux de mortalité moyen pour les six principaux types de turbines (lignes, effets moyens prédits basés sur un modèle mixte linéaire généralisé avec un terme d'interaction du type de turbine × longueur du poisson ; ombrage, bandes de confiance à 95 % ; points, taux de mortalité spécifiques pour une longueur de poisson et un type de turbine donnés [parfois hors des bandes de confiance de la moyenne]).

La mortalité en turbine n’est pas la mortalité totale des poissons, puisque les poissons peuvent emprunter d’autres voies que le canal usinier et la chambre d’eau où se situe le dispositif hydro-électrique (toute l'eau de la rivière ne passe pas dans l'usine). Et ce dispositif est généralement protégé par des grilles visant à réduire le nombre de poisson y circulant. Les chercheurs observent :
« Les évaluations des impacts de l'hydroélectricité sur la mortalité des poissons dans les turbines ne doivent pas être considérées isolément. Il est également important de prendre en compte le risque d'entraînement des poissons, qui est la probabilité de passer devant les turbines par rapport à des voies alternatives, telles que des déversoirs ou des installations de dérivation ou de migration des poissons (Harrison et al., 2019 ; Schilt, 2007). (…) Il est essentiel de contextualiser le taux de mortalité à un taux réalisé par poisson ou par espèce pour tirer des conclusions plus larges au niveau de la population, en particulier pour les poissons non migrateurs qui n'ont pas nécessairement besoin de passer par les centrales hydro-électriques pour réaliser leurs cycles de vie. »

La conclusion donne le point de vue des chercheurs :
« Tous les avantages de l'hydroélectricité en tant qu'énergie propre et renouvelable doivent être débattus en rapport avec les blessures des poissons et les autres impacts qu'elle exerce. Nous soutenons que dans ces conflits d'intérêts, il est difficile de s'entendre sur des taux de mortalité tolérables et que les parties prenantes doivent tenir compte des aspects du bien-être animal, de l'écologie des populations et de la conservation de la biodiversité, mais aussi de l'économie de l'hydroélectricité, de la politique environnementale et de l'acceptation sociétale. Compte tenu de l'exhaustivité de notre ensemble de données et de nos analyses, qui tenaient également compte des incertitudes généralement négligées, nos résultats soutiennent un choix éclairé et un débat holistique sur la durabilité de l'hydroélectricité et l'importance d'élucider les coûts écologiques encourus sur les rivières. Pour les très petites et petites centrales hydroélectriques, la charge de justification est importante en raison d'un taux de mortalité global de 22,3 % et de leur grand nombre à l'échelle mondiale malgré leur part négligeable dans la production d'hydroélectricité renouvelable (ARCADIS & Ingenieur büro Floecksmühle, 2011 ; Schwarz, 2019).

La gamme de mortalités observées empiriquement a indiqué qu'il existait des centrales hydro-électriques avec des types communs de turbines, des configurations techniques et opérationnelles et des mesures de protection des poissons mises en œuvre qui ont réussi à réduire la mortalité, dans plusieurs cas même à 0. Ces centrales exemplaires ouvrent la voie à une hydroélectricité plus durable. En revanche, les configurations préjudiciables qui entraînent une mortalité élevée doivent être identifiées et fermées ou au moins substantiellement rénovées. Les turbines à rotation plus lente, telles que les vis d'Archimède, les turbines VLH et les roues hydrauliques, sont moins nocives pour les poissons que la plupart des types de turbines conventionnelles (Bracken et Lucas, 2013). Néanmoins, nous soulignons l'importance de poursuivre les recherches sur le développement de turbines généralement plus protectrices pour les poissons et les ajustements des turbines courantes (Čada, 2001 ; Hogan et al., 2014). Le fonctionnement et les effets protecteurs de ces turbines sur les poissons doivent être évalués avec des méthodes normalisées et contrôlées dans des conditions de terrain réalistes. Les turbines protectrices des poissons accompagnées d'installations fonctionnelles de migration des poissons vers l’amont et l’aval doivent devenir l'étalon-or. Compte tenu de l'essor actuel de l'hydroélectricité dans les grands systèmes fluviaux mégadivers (Anderson et al., 2018 ; Winemiller et al., 2016), l'adoption d'une telle norme à l'échelle mondiale est encore plus importante pour équilibrer les besoins en énergie renouvelable avec ceux de la protection de la biodiversité et et de l’amélioration envronnemental des écosystèmes fluviaux. »

Discussion
Ces données montrent que la mortalité des poissons en turbines, vis ou roues est un sujet réel, qui doit inspirer un souhait de généralisation progressive des bonnes pratiques. Cela concerne surtout les poissons de grande taille qui ont des migrations ou des mobilités importantes dans leur cycle de vie. Il convient de rechercher les meilleures options pour continuer à réduire cette mortalité, la bonne nouvelle étant qu’elle peut être quasi nulle dans les configurations les plus favorables. Au lieu de perdre de l’argent public à détruire des ouvrages utiles et appréciés en rivières, les gestionnaires publics eau et biodiversité seraient avisés de travailler davantage dans cette direction avec les exploitants.

Ce qui manque le plus à notre connaissance, ce sont des études assez massives et concluantes sur la proportion des poissons qui passent vers la turbine (ou vis, ou roue) par rapport à ceux qui prennent une autre voie de dévalaison (déversoir dans la zone de débit réservé, goulotte de dévalaison avant les grilles, etc.). En effet, l’impact réel sur les poissons au plan écologique (populationnel) tient à cette proportion des individus qui passent dans la turbine par rapport à celle qui dévalent autrement. Il existe quelques suivis radiotélémétriques (taggage de poisson pour analyser leur comportement de l’amont vers l’aval), mais ils sont sur de faibles populations. Et l’analyse de la configuration hydraulique des sites n’est pas standardisée (un seuil de moulin de 1 ,5 m déversé en permanence sur toute sa largeur n'est pas un barrage de 15 m avec un seul exutoire dévalant).

Il faut aussi signaler que dans le bilan global et holistique de l'hydro-électricité, on doit inclure les dimensions positives des retenues et canaux : ces milieux d'origine artificielle servent aussi de refuges et de zones de croissance à certains espèces. Et dans un contexte de réchauffement climatique, ils sont parfois les options de dernier ressort face aux mortalités massives impliquées par les assecs (voir par exemple la revue de Beatty et al 2017).

Aucun scénario de sortie du carbone ne prévoit la possibilité de se passer de l’hydro-électricité, la tendance étant d'augmenter sa part dans le mix énergétique, en particulier pour compenser les pertes pouvant être liées à de moindres débits en suite au réchauffement climatique et à de meilleurs aménagements écologiques au droit des ouvrages. Le GIEC intègre cette source d'énergie dans les options de prévention d'un réchauffement dangereux dans son dernier rapport. Il convient donc d’aborder ce sujet avec un esprit constructif où l’on cherche les meilleurs compromis entre la protection des poissons d’une part, la décarbonation et relocalisation de l’énergie d'autre part.  

Référence : Radinger J et al (2022), Evident but context-dependent mortality of fish passing hydroelectric turbines, Conservation Biology, 36, 3, e13870

31/10/2015

Mortalité en turbine: une modélisation discutable en Loire-Bretagne (Briand et al 2015)

Un travail a été mené sur le bassin de Loire-Bretagne pour estimer la mortalité totale des jeunes saumons (smolts) et des anguilles argentées due aux ouvrages hydro-électriques en activité sur les rivières. Les valeurs de mortalité obtenues vont de 2 à 27% des poissons produits sur le bassin. Nous exposons ici des réserves sur les formules utilisées pour le calcul de mortalité et sur l'absence d'intervalle de confiance dans les résultats du modèle. Minimiser la mortalité piscicole dans les ouvrages hydro-électriques est un vrai enjeu, en particulier si l'on souhaite le plein développement de cette source d'énergie dans les années à venir. Mais il faut au préalable améliorer les connaissances sur les mortalités réelles en conditions d'exploitation, particulièrement pour les petites puissances très peu étudiées à ce jour dans la littérature scientifique. Cette analyse par gradient de puissance est également nécessaire pour adapter les prescriptions réglementaires d'ichtyocompatibilité des installations. 

Une étude sur la mortalité des saumons et anguilles a été produite sur le bassin Loire-Bretagne, avec pour auteurs Cédric Briand (EPTB-Vilaine), Marion Legrand (Loire Grands Migrateurs), Pierre-Marie Chapon (Onema-INRA), Laurent Beaulaton (Onema-INRA), Gaëlle Germis (Bretagne Grands Migrateurs), Marie-Andrée Arago (Onema), Timothée Besse (Loire Grands Migrateurs), Laura De Canet (Loire Grands Migrateurs) et Pierre Steinbach (Onema). Il s'agit d'une modélisation à échelle de bassin versant.


Méthodes et résultats
L’effet des ouvrages hydro-électrique sur la mortalité en dévalaison a été simulé à l’aide d'un modèle de répartition des poissons (saumons en phase smolt, anguilles) et d'un modèle de mortalité en turbine, à l’échelle de Loire-Bretagne (155.000 km2 de rivières). Les productions de smolts ont été évaluées à 100 000, celles d'anguilles à 306.700 (fleuves côtiers de Bretagne), 314.900 (Loire) et 124.400 (fleuves côtiers  de Vendée). Les calculs de mortalité ont été appliqués à 387 des 749 ouvrages de la zone, soit 578 turbines.

Chez les smolts, les taux moyens de mortalité dans les turbines ont été calculé à 17% dans les Kaplan, 20% dans les Francis et une mortalité moyenne de 20% appliquée aux turbines de caractéristique inconnue (43%). Chez les anguilles, les mortalités moyennes dans les turbines ont été établies à 45.8%, 88.5% et 70.8% dans les turbines Kaplan, Francis et indéterminées respectivement.

Pour les saumons, les mortalités sont évaluées à N=26.872 (soit 27%) de la production de smolts en Loire, et N=1 636 (soit 2%) en Bretagne. Pour l’anguille, les mortalités sont évaluées à N=9831 (soit 3.1%) de la production d’anguilles argentées en Loire, N=9418 (soit 3.3%) en Bretagne et N=2687 (soit 2.2%) en Vendée.

Nos observations : un modèle de mortalité perfectible avec une absence peu crédible de marge d'erreur
Notre principale réserve est que le modèle ne produit aucun intervalle de confiance. Par définition, le modèle de production des saumons et anguilles a des incertitudes, celui de mortalité en turbine également. On s'attend donc à trouver une expression de cette incertitude croisée sous la forme d'une marge d'erreur dans les résultats ou, ce qui revient au même, une fourchette à 95% d'intervalle de confiance. C'est la norme en modélisation et cela permet de juger d'un coup d'oeil la robustesse des calculs : il est tout à fait normal d'avoir des incertitudes dans un modèle, mais il est en revanche anormal de ne pas produire une estimation de ces incertitudes. En particulier quand le travail de modélisation possède une visée applicative à destination du décideur.

Si l'on s'en tient à la modélisation de mortalité en turbine (nous n'avons pas examiné le volet piscicole), une raison pour laquelle on ne trouve pas de marge d'erreur est que les formules employées (équations 2.5 à 2.9) sont déterministes, c'est-à-dire qu'elles sont censées donner un résultat exact une fois les paramètres renseignés (et donc un résultat constant à paramètres identiques). Or, ces équations posent divers problèmes :
  • l'équation de mortalité des smolts en Kaplan ne fait pas intervenir la hauteur ni le débit ni la vitesse de la roue (simplement des paramètres constructif comme le diamètre ou le nombre de pales) ;
  • les travaux sur lesquels reposent ces équations – Larinier et Dartiguelongue 1989, Larinier et Travade 2002  – se fondent sur des échantillons assez faibles de turbines, les auteurs reconnaissant en particulier que les sites de petite puissance sont trop peu représentés. Or l'examen de l'annexe J montre que beaucoup d'ouvrages de la zone ont moins de 5 m de hauteur et/ou moins de 10 m3/s de débit d'équipement ;
  • l'équation utilise une transformation angulaire (arcinus) pour normaliser les réponses en pourcentages, mais cette solution peut biaiser les valeurs faibles ou fortes de la distribution qu'elle "étire" (ce qu'observent Larinier et Travade 2002) ;
  • cette même équation est dépendante de la taille du smolt qui a été fixée dans l'étude soit à 15 soit à 18 cm (alors que cette taille varie plutôt in vivo de 10 à 20 cm) ;
  • les travaux cités montrent que les estimations par régression linéaire manquent une partie de la variabilité des mortalités observées (par exemple, R allant de 0.59 à 0.87 chez Larinier et Travade 2002, la première valeur étant celle des jeunes salmonidés en Kaplan, soit le cas le plus fréquent dans le travail ici analysé). 
Avant ces incertitudes liées au calcul de mortalité pour le poisson déjà engagé dans la turbine se pose la question de la répartition des poissons à l'approche des centrales – c'est-à-dire la question du comportement réel des espèces. La formule retenue sur ce point (équations 2.13 et 2.14) est celle d'une mortalité en dévalaison au pro rata du débit turbiné par rapport au débit classé, sans hypothèse particulière sur l'évitement des ouvrages hydro-électriques (du fait de grille, de vibration, de débit d'attrait ou de tout autre facteur d'influence du comportement du poisson in situ). Là encore, on peut tout à fait admettre des simplifications dans un modèle, mais il est plus difficile d'admettre une approche déterministe ne donnant aucune estimation de sa marge d'erreur ou aucune confrontation de ses choix avec des données empiriques de validation.


Améliorer la modélisation par des études in situ sur les petites puissances
Le travail mené par Cédric Briand et ses collègues est une approche intéressante, mais elle manque quelque peu de réalisme… malgré des résultats de mortalité produits à l'unité près. Nous ne partageons donc pas la conclusion selon laquelle "les résultats sont jugés comme suffisamment robustes pour permettre une priorisation des actions au niveau du bassin Loire Bretagne". Comme ce travail est prévu pour être évolutif, nous ne pouvons que souhaiter une amélioration de ses paramétrisations.

Rappelons que sur certains sites de petite puissance (moins de 500 kW), il serait possible de faire des estimations réalistes de mortalité à filet filtrant posé en sortie de turbine, cela en condition réelle d'exploitation de la centrale et de circulation du poisson. A plusieurs reprises lors de concertations passées, il a été souhaité que l'Onema mène des études sur un échantillon conséquent de moulins et usines de petite puissance, afin de produire ces analyses réalistes de mortalité dont il est reconnu qu'elles manquent dans la littérature scientifique. A notre connaissance, aussi bien les syndicats de producteurs (FHE, EAF) que les fédérations de moulins (FFAM, FDMF) seraient disposés à aider au recrutement de sites volontaires pour des tests.

Tant que ce travail ne sera pas mené selon un protocole accepté par les parties, les calculs n'approcheront que pauvrement la réalité sur certaines situations. Notons que cette réserve est parfaitement neutre sur le résultat de telles études par rapport aux calculs de Briand et al 2015 (sous-estimation ou sur-estimation de la mortalité effective en turbine). Mais l'ignorance n'est pas la solution, et comme le souhaitaient M. Larinier et ses collègues, seules des études plus approfondies pourront améliorer le réalisme des modèles.

Référence
Briand C et al (2015), Mortalité cumulée des saumons et des anguilles dans les turbines du bassin Loire-Bretagne, version 0.3.1, 260 p.

Illustrations : en haut, exemple de résultat du modèle de Briand et al. 2015, mortalité des smolts dévalant en Bretagne ; en bas, modèle de filet filtrant pour étude de mortalité in situ. Le protocole le plus réaliste nous paraît l'analyse des mortalités effectives en période migratoire des espèces d'intérêt, sans contrainte sur le poisson (pas d'injection forcée en distributeur), ce qui permet notamment d'évaluer les comportements spontanés d'évitement.

Voir aussi sur Hydrauxois : Mortalité des poissons en turbine, une analyse critique

14/05/2015

Mortalité des poissons en turbine, une analyse critique

Andreas Rick (ingénieur) nous a fait parvenir une intéressante étude critique sur la mortalité des anguilles en turbine telle qu'elle est aujourd'hui considérée par les services instructeurs de l'Onema. Son analyse met notamment en lumière la faible robustesse (voir non significativité) statistique de certains modèles de mortalité présentés comme références. Elle souligne aussi que ces études concernent des sites de puissances importantes, sans commune mesure avec les équipements modestes des moulins. Ce dernier point est un travers fréquent des travaux menés sur l'hydraulique en lien avec l'environnement, travaux qui ont souvent été réalisés sur des grands sites dont l'hydraulicité n'est pas représentative de la problématique des seuils, chaussées et glacis.

A lire : Rick A (2015), Mortalité des anguilles dans les turbines : les conclusions de l’Onema sont-elles robustes et applicables aux moulins ? (pdf)